

Simulation of Renewable Energy Systems

INSEL 8 :: Tutorial

Jürgen Schumacher

INSEL 8 :: Tutorial

© 1986-2019 Jürgen Schumacher. All rights reserved.

Version: INSEL 8.3.0 June 2021

Please visit us at www.insel.eu

http://www.insel.eu

6

Bison is free software and is available under the GNU General Public License.

Eclipse is a trademark of the Eclipse Foundation, Inc. and copyright protected by Eclipse contributors and

others.

GCC is copyright protected by Free Software Foundation, Inc.

Flexx is copyright protected by The Regents of the University of California and The Flex Project.

gfortran is copyright protected by Free Software Foundation, Inc.

gnuplot Copyright 1986 – 1993, 1998, 2004 Thomas Williams, Colin Kelley

HP VEE is a registered trademark of Hewlett-Packard Co.

IISiBat is copyright protected (Centre Scientifique et Technique du Bâtiment CSTB).

INSEL is a registered trademark of doppelintegral GmbH, Stuttgart, Germany.

Java is copyright protected by Sun Microsystems.

LabVIEW is a registered trademark of National Instruments Corporation.

Linux is a registered trademark of Linus Torvalds.

Mac OS X is a registered trademark by Apple, Inc. in the United States and other countries.

MATLAB is a registered trademark of The MathWorks Inc.

Microsoft Windows and Visual Studio is a registered trademark of Microsoft Corporation in the United States

and other countries.

MiKTex-pdfTeX is copyright protected by D. E. Knuth and Han The Thanh

Ruby is copyright protected free software by Yukihiro Matsumoto

Simulink is a registered trademark of The MathWorks Inc.

Subversion is an open source version control system.

TeX is a trademark of the American Mathematical Society.

TRNSYS is copyright protected (S.A. Klein, F.L Alvarado).

VSEit is copyright protected by Kai Brassel.

Window Builder is provided under the terms and conditions of the Eclipse Foundation Software User

Agreement.

All examples presented in this Tutorial can be found in the
examples\tutorial directory of an INSEL installation.

Tutorial

Preface

This Tutorial is an attempt to enthuse you about a fascinating topic: Computer
Simulation of Renewable Energy Systems. To be more precise, computer simulation of
renewable energy systems on the basis of a graphical programming language.

In contrast to algorithmic programming languages like C/C++, for example, graphical
programming languages are very subtle to use. Simulation models can be created by
mouse operations rather than having to implement complex algorithms in a text-based
programming environment.

The idea of graphical programming is old, it goes back to the year 1955 when Selfridge
published a paper at the Western Joint Computer Conference. However, digital computers
were terribly slow at that time. Today, in times of Digitalization, computers are terribly
fast.

The idea of simulating renewable energy systems is old, too. Duffie and Beckman
published their first book Solar Energineering of Thermal Processes in the year 1974
already and together with Klein they released the first graphical programming language
for solar energy systems, named TRNSYS.

During the 1980’s renewable energy simulation experienced a boom in Europe, not only
because of the Tschernobyl disaster. A graphical programming language that was
invented in the year 1986 is the simulation environment INSEL, the software this
Tutorial is about – we still keep on celebrating INSEL’s 25th birthday.

Today, after the Fukushima Daiichi nuclear disaster, renewable energy systems are more
vital than ever. Not only the German government has decided to abandon nuclear power
and to support renewable energy in the best possible way. Actually, 2011 renewable
energy production has overtaken power from nuclear plants in Germany.

We are convinced that simulation can contribute to this renewable energy future – not
only with a single tool like INSEL but on the basis of a combination using the
advantages of different approaches and strengths of programs like TRNSYS, MATLAB &
Simulink, and LabVIEW, to mention a few. INSEL supports them all, i. e., all INSEL
models can be used in other programming environments.

The presentation of this Tutorial can really be called a milestone in the history of INSEL.Milestone
It is the first time that a complete documentation is available which covers all aspects of
INSEL programming. Why’s that?

INSEL is the result of a German research project. Funded by the German Research
Ministry and afterwards by the German Volkswagen Stiftung – without a plan for
further development and marketing, however. In consequence, the user circle of the
software has been restricted to university people basically.

In the early years of the 21st century the company doppelintegral has been founded with
the aim to turn INSEL into a product and make it available to a broader public. One of

ii

the most enjoyable results of this effort is that this Tutorial is now almost complete.

A sheer endless number of people have contributed to the fact that INSEL exists, most ofThank you’s
them are mentioned by name in the INSEL 8 Block Reference Manual.

Without the engagement of my doctor father Prof. Dr. Joachim Luther INSEL would
definitively not exist. Jochen, you are the first person to thank. Without you, my whole
life would have taken a different course.

Dr. Hans Karl combines the forenames of my father Hans Karl Schumacher who died far
too early. I assume that it was my destiny that you showed me the path to the beauty of
graphical programming languages.

Prof. Dr. Ursula Eicker, my wife and inspiration—without you INSEL would have
departed like a grain of sand in the desert.

Another “without” goes to Kai Brassel. Without your work on the Java-based VSEit
framework INSEL would not have survived the 16 bit INSEL 7 world.

The University of Applied Sciences Stuttgart and its Research Center zafh.net kept
INSEL alive from 2002 to 2019.

Now INSEL is going to be further developed into an Urban Modeling Patform named
insel4D at Concordia University, Montréal, under the new Canada Excellence Research
Chair Next Generation Cities. If you wish to keep track of that development, visit
www.insel4D.com from time to time.

A big hug goes to my friend Mike Barker for correcting my broken English in the final
version—all temporary shortages are up to myself.

Jürgen Schumacher

Oldenburg/Stuttgart/Montréal 2019

Tutorial

http://www.insel4D.com

Contents

Preface i

Introduction vii

PART I :: Fundamentals 1

1 Getting started with INSEL 8 3
1.1 Installation . 3

1.1.1 Windows . 3
1.1.2 macOS . 4

1.2 Starting and ending INSEL 8 . 4
1.3 Running a first example . 6
1.4 INSEL blocks in VSEit . 8

1.4.1 The Palette . 10
1.4.2 Block entities . 11
1.4.3 Entity editors . 13
1.4.4 Errors in networks . 15

1.5 Macros . 16

2 INSEL programming concepts 18
2.1 INSEL block groups . 18
2.2 Basic photovoltaics . 19
2.3 The INSEL concept of time . 23
2.4 Nested Timer blocks . 26
2.5 The Timer blocks CLOCK and FDIST 30
2.6 Solar radiation . 32

3 Reading and writing data files 42
3.1 Reading data . 44

3.1.1 Fortran format conventions . 49
3.1.2 The READN block . 54
3.1.3 The READD block . 56

iv Contents

3.1.4 File name qualifiers . 58
3.2 Writing data to files . 61

3.2.1 Monitoring and simulation . 63
3.3 Plotting data . 64

4 If blocks 68
4.1 At end If blocks . 68
4.2 If blocks with a parameter . 75
4.3 Conditional If blocks . 78
4.4 General if conditions . 81

4.4.1 Load profiles . 83
4.5 Calculation list . 87

5 Delay and Loop blocks 90
5.1 Handling control cycles . 91

5.1.1 The DELAY block . 91
5.1.2 PID controller . 94

5.2 Solving differential equations . 95
5.2.1 The Jentsch rocket . 96
5.2.2 Solar collector equation . 97

5.3 Loop block concept . 97

PART II :: Applications and exercises 99

6 Solar meteorology 101
6.1 Global radiation . 101
6.2 Radiation time series generation . 107
6.3 Diffuse radiation . 112
6.4 Radiation on tilted surfaces . 117
6.5 Ambient temperature time series generation 120

7 Photovoltaics 124
7.1 Grid-connected PV generators . 124
7.2 Optimum tilt angle . 129
7.3 Parameter identification methods for PV modules 134
7.4 Module mismatch and shading problems 134
7.5 Thin-film modules . 134
7.6 Stand-alone PV systems . 134

7.6.1 Batteries in INSEL . 134
7.6.2 Implementation of load profiles 149
7.6.3 System sizing . 151
7.6.4 System studies . 160
7.6.5 Parameter variations . 163

Tutorial

Contents v

7.7 The hybrid system Energielabor . 168

8 Solar heating and cooling 169
8.1 Solar collectors . 169
8.2 Storage tanks . 172
8.3 Heat exchangers . 174

9 INSEL GUI’s with VSEit 181

10 INSEL in MATLAB and Simulink 182
10.1 MATLAB . 182
10.2 Simulink . 185

10.2.1 S-functions . 185
10.3 The S-function SinselBlock . 192
10.4 Getting Started . 192

10.4.1 Installer . 192
10.4.2 Link vs. simple copy . 196
10.4.3 Enumerations and operation modes 197

PART III :: Advanced concepts 199

11 INSEL without GUI 201
11.1 Running .insel files . 201
11.2 .include/.insel applications . 206
11.3 Parameter variations with Ruby scripts 209
11.4 Optimization with GenOpt . 213
11.5 Direct calls of INSEL blocks . 214
11.6 The C++ class CinselBlock . 234

12 Programming INSEL blocks 240
12.1 A Fortran crash course . 245

12.1.1 The principle form of a Fortran program 246
12.1.2 Fortran data types . 249
12.1.3 If-Then-Else structures . 255
12.1.4 Structuring program projects . 263
12.1.5 Guidelines for writing INSEL Fortran code 274

12.2 Programming INSEL blocks (cont.) . 277
12.2.1 Block wizard . 277
12.2.2 Templates . 280
12.2.3 Call modes . 285
12.2.4 Properties . 289
12.2.5 Documentation . 290

12.3 Text output from INSEL . 295

Tutorial

vi Contents

12.3.1 Message files . 295
12.3.2 The INSEL message system . 296

12.4 INSEL block source code examples . 300
12.4.1 The CONST block . 303
12.4.2 The SUM, MUL, MAX, and MIN blocks 304
12.4.3 The DIV block . 306
12.4.4 The ROOT, GAIN, ATT, and OFFSET blocks 309
12.4.5 The T-block DO . 311
12.4.6 The I-block IF . 313
12.4.7 The D-block DELAY . 314
12.4.8 The L-block NULL . 316

12.5 Interfacing INSEL with Python . 322

13 Programming INSEL extensions in Eclipse 324
13.1 Java Development Kit . 325
13.2 Eclipse . 325

13.2.1 A first Java project . 326
13.2.2 Installing Eclipse plugins . 332

13.3 C/C++ Development Tools (CDT) . 333
13.4 Fortran Development Tools (Photran) 338
13.5 Ruby Development Tools . 343
13.6 Python (PyDev) . 344
13.7 TeXlipse . 344
13.8 WindowBuilder . 345
13.9 Subversion (SVN) . 350
13.10 Eclipse as INSEL block IDE . 358

13.10.1 A makefile project for user block development 358
13.10.2 Debugging user blocks in Eclipse 358

PART IV :: Workshops 367

14 PV Heat Pump Storage System 369

15 TRNSYS Restaurant 379

Résumé 385

A Appendix 387
A.1 Directory structure, dependencies, and paths 387

A.1.1 File Handling . 391

Tutorial

Introduction

INSEL is an acronym for INtegrated Simulation Environment Language. INSEL is not a
simulation program but provides an integrated environment and a graphical
programming language for the creation of simulation applications.

The basic idea of INSEL is to connect blocks to block diagrams that express a solution
for a certain simulation task.

INSEL was originally developed for modeling of renewable energy systems, the first
versions being written at the former Renewable Energy Group at the Faculty of Physics
of Oldenburg University, Germany.

What makes INSEL special?

The classical approach to computer programming is based on algorithmic programmingProgram flow
languages like Fortran or C, for example. From a set of elementary statements a program
is written with an ASCII text editor, compiled and finally linked together to build an
executable. Program flow is the main aspect which dominates the whole development
stage.

Graphical programming languages like INSEL use a totally different approach whereData flow
data flow plays the key role. Instead of statements these languages provide graphical
symbols which can be interconnected by mouse operations to build up larger structures.
The graphical symbols can represent mathematical functions, real components like solar
thermal collectors, photovoltaic modules, wind turbines and batteries, for example, or
even complete technical systems of any kind. The graphical elements of INSEL are
blocks.

The following list gives a first impression of the modular organization and the currently
main application fields of INSEL.q qq q The core component of INSEL is the inselEngine which is a full compiler that caninselEngine

interpret and execute applications written in the INSEL language or created from
the graphical pre-processor VSEit. INSEL 8 provides an import function for
INSEL 7 models written in HP VEE.q qq q Fundamental blocks, basic operations and mathematical functions of theLibraries
environment are provided in a dynamic library called inselFB. It contains tools
like blocks for date and time handling, access to arbitrary files, blocks for
performing mathematical calculations and statistics, blocks for data fitting,
plotting routines, and so on.q qq q Energy meteorology and data handling is available as library inselEM. This library
contains algorithms, like the calculation of the position of the Sun, spectral
distribution of sunlight, radiation outside atmosphere. A large data base provides
monthly mean values of irradiance, temperature and other meteorological
parameters. Generation of hourly radiation, temperature, wind speed, and

viii Contents

humidity data from monthly means is possible. Further, diffuse radiation models,
conversion of horizontal data to tilted are included.q qq q Solar electricity components like photovoltaic modules, maximum-power- point
tracker, wind turbines, batteries, battery charge regulators, hydrogen storage
components, water pumps, inverters, motors, and generators, are available in the
dynamic library inselSE.q qq q Solar thermal components such as thermal flat-plate and vacuum water and air
collectors, storage tanks. A full set of models for the simulation of thermal solar
cooling plants, like desiccant and evaporative cooling systems, absorption cycles
is implemented in the library inselST.q qq q Solar thermal power plants for solar electricity generation is under development
as library inselPP which will contain models for parabolic trough, solar tower,
dish-sterling and other solar power plant technologies.q qq q A building simulation library called inselBS is under development and will contain
models for walls, windows, convective and radiative heat exchange between
surfaces, thermo-active components like cooling and heating floors and ceilings.q qq q A data processing library inselDP for Internet communication via different
protocols is currently under development.q qq q A programmable environment with a user-written library inselUB in which
practically all fields of engineering applications can be built in a very structured
way. All standard programming languages like Fortran, C/C++, which can be
compiled into object code, are supported.q qq q Data bases for simulation parameters of components that are available on theData bases
market are included INSEL 8.

Structure of the Tutorial

This Tutorial is an introduction to programming with INSEL. No previous knowledge of
INSEL or of any other graphical programming language is required.

All examples and exercises of this Tutorial can be solved and tested in practice by usingPrerequisite
the 30-days trial period of the INSEL Trialware, which can be downloaded from
www.insel.eu. When the 30 days are expired a license must be available, otherwise the
software can no longer be used.

The Tutorial is organized in three parts.

Part I teaches the fundamentals of INSEL. Part II is task-oriented, so that you can go
directly to the section that suits your interest most. Part III covers advanced
programming techniques like implementation of user-written INSEL blocks and

Tutorial

Contents ix

functions into dynamic libraries. The construction techniques for the creation of user
interfaces is also presented in the third part.

The goal of this Tutorial is to enable you – the reader – to program applications with
INSEL as soon as possible. You can learn how to use the modular simulation tool INSEL
and apply it to renewable energy systems. This knowledge can then be applied to all
other fields of numerical engineering.

First programming steps are achieved very fast. To work through the first two parts ofTime required to
study the Tutorial the Tutorial intensively will take about a week to complete. We have used guided

examples for the most part. The exercises in Part II are a challenge to solve problems on
your own. Solutions are provided with explanations. Part III is optional for advanced
INSEL programmers or MATLAB/Simulink users.

Although INSEL supports the operating systems Windows, Mac OS X and Linux, for
example, the description given here assumes that you are working under Microsoft
Windows.

Whereas INSEL is the calculation engine to solve mathematical models, the commercial
visualisation tool VSEit (Versatile Simulation Environment for the Internet) is used
extensively to graphically construct INSEL models. Since the VSEit framework is
completely written in Java it can be used with Windows, Mac OS X and Linux, too.

The Tutorial is organized in Modules, which treat different subject areas. Most Modules
also contain concrete pre-programmed examples which should be analyzed and run. The
user can then learn to reconstruct these examples following the given examples. In a
second stage, exercises are given, where the reader should find own solutions in model
construction. However, the solutions are also presented in this Tutorial.

Module 1 shows how to basically install and handle the simulation environment. ThePart I
interaction between the graphical tool VSEit and the INSEL calculation engine is
explained and demonstrated in simple examples. The basic handling of the graphical
interface is explained in detail.

Module 2 starts with a description of the programming concepts of the graphical
simulation tool INSEL. It explains the simpler block concepts such as Constant and
Standard blocks and introduces the often needed Timer block concept. The Module then
covers a range of examples using the block concepts explained before. Among the
examples the performance of photovoltaic modules will be calculated for grid-connected
and stand-alone systems.

Module 3 treats data file handling in INSEL. Reading and writing data from files and the
corresponding formatting statements are explained.

Module 4 introduces a further block concept, the If blocks, and shows examples where
such blocks are useful.

Tutorial

x Contents

Module 5 starts with Delay blocks, which are necessary to solve “algebraic loops.” As a
last and most complex block concept, Loop blocks are introduced.

At the end of Module 5 you will be familiar with all the block concepts that INSEL offers.

Part II covers five Modules with extensive applications and two Modules about graphicalPart II
user interfaces in INSEL and Simulink.

Module 6 is a course about some aspects of meteorological data processing.

Module 7 touches the topic of photovoltaic system simulation.

Module 8 shows simulation examples from the field of solar heating and cooling.

Module 9 handles the creation of interactive VSEit GUIs.

Module 10 describes how INSEL blocks can be used in the MATLAB and Simulink
environment and completes the second part.

Part III is meant as a supplement for the advanced INSEL programmer.Part III

Module 11 introduces INSEL programming using a text editor. The graphical
representation in VSEit is then no longer necessary. Very few INSEL language
statements need to be learnt to directly program in a text editor and create
.include/.insel applications. The Module also shows how general-purpose
programming language like C/C++ or Ruby, for example, can be used to directly
communicate with INSEL blocks – either directly or via the wrapper class CinselBlock.
The Module ends with an application which is completely independent of the
inselEngine.

Module 12 describes how users can write and implement their own INSEL blocks in
Fortran, C, C++ or any other compiler language which can generate dynamic libraries as
output. INSEL provides a block wizard for the creation of new blocks and tools which
are required to fully integrate these blocks into the VSEit environment.

Module 13 introduces the integrated development environment Eclipse for the purpose
of INSEL block management and debugging. In addition to the Java, Fortran, and C/C++
languages, the Module introduces the Ruby script language, LATEX documentation of
INSEL blocks, a plug-in named Window Builder for the creation of Java-based graphical
user interfaces, and finally Subversion, a plug-in for version control of software
development.

Tutorial

PART I :: Fundamentals

1 :: Getting started with INSEL 8

1.1 Installation

The available INSEL 8 installers for supported operating system areq qq q win32\setup_insel_8.3.0_32.exe (Windows 10)q qq q win64\setup_insel_8.3.0_64.exe (Windows 10)q qq q macOSX/insel_8.3.0_macOS.pkg (macOS Mojave)q qq q linux32/insel_8.3.0_32.deb (Debian Linux)q qq q linux64/insel_8.3.0_64.deb (Debian Linux)q qq q linux32/insel_8.3.0_32.rpm (Red Hat Linux)q qq q linux64/insel_8.3.0_64.rpm (Red Hat Linux)

INSEL 8.3 will be the last version to support 32-bit operating systems. The setupAdministrator
rights required program requires administrator rights in order to install the software.

1.1.1 Windows

All files, executables and dynamic link libraries which are required by INSEL 8 are
copied to the INSEL installation directory, which is typically

C:\Program Files\INSEL 8.3 or C:\Program Files (x86)\INSEL 8.3

when the 32-bit version is installed under 64-bit Windows. The directory includes a
copy of the Java Development Kit JDK Version 8 since the VSEit user-interface of INSEL
is based on Java 8.

The resources directory of the INSEL installation is added to the Windows
environment variable %PATH%.

The INSEL documentation is written in LATEX and is supplied in .pdf format. TheDocumentation
Windows version uses Adobe’s Acrobat Reader. In case, no Acrobat Reader can be found
a fallback to the reader provided in the resources directory is used. In most Debian
distributions Document Viewer is installed by default.

4 1. Getting started with INSEL 8

1.1.2 macOS

The .pkg package can be installed by a double click on its icon. The directory structure
is similar to the Windows version. The application is typically installed as
/Applications/INSEL.app macOS application bundle.

Symbolic links are created to all dynamic libraries and three executables which INSELSymbolic links
uses. A complete list can be found in the shell script
INSEL.app/Contents/_createRequiredSymbolicLinks.sh.

GNUPLOT GOES HERE: SEE PROGRAMMERS GUIDE (TEMPORARILY)

1.2 Starting and ending INSEL 8

In the Windows version the installation program has created an icon on your desktop.
INSEL 8 can simply be started with a double click on the icon.

Another possibility is to start INSEL 8 via Windows’ Start button and the link to the
executable in the Programs list (group insel 8).

Yet another possibility is to browse to the installation directory (typically
C:\Program Files\INSEL 8.3) with the Windows Explorer and double-click on the
executable insel_8.exe.

There is another executable named insel.exe in the resources subdirectory. This
executable is meant to run INSEL 8 from a console prompt or in batch mode.

During start INSEL 8 will display a splash screen.Splash screen

After a moment the INSEL window appears.INSEL window

Tutorial

1.2. Starting and ending INSEL 8 5

q qq q The Title bar contains the program name, the name of the currently open
document (like new-1.vseit for the first open, empty model), and the standard
Windows buttons to minimize, maximize and close the window.q qq q The Menu bar with the File, Edit, Simulation, Programming, Tools, and Help menu
can be used to access items and features.q qq q The Tool bar and its icons provide buttons for the most frequently used functions.q qq q On the left-hand side the Palette is displayed. Here all INSEL blocks can be found.
They are organized by categories, like Time, Meteorology, Electricity etc.q qq q Next to the palette is the Types tab. Similar to the palette the Types pane lists
INSEL blocks, but only those used in the current model.q qq q The white space on the right side is the Work area which can be used to create
INSEL block diagrams.q qq q The Output window below the work area is used by INSEL for text output.q qq q The Status bar is displayed at the bottom of the INSEL window. It is used for
temporary text messages and includes the Progress bar which shows the progress
of a running INSEL model.

The INSEL main window can be moved, resized and closed in the usual fashion. The FileEnding INSEL 8
– Exit... menu item and the Close button in the window’s title bar are equivalent options
to end the program.

Tutorial

6 1. Getting started with INSEL 8

1.3 Running a first example

A good starting point to become familiar with INSEL are the examples which can be
found in the examples directory. The easiest way to access the examples is via the File –
Open example... menu item which will open a file chooser dialog similar to the one in the
next figure.

In the blocks directory one basic example for each INSEL block is available. It isblocks directory
certainly a good idea to browse through the subdirectories of the blocks directory and
get an overview which blocks are available in INSEL 8 and what their functions are.

As a first example we choose pvi.vseit from the electricity directory. The blockpvi.vseit
diagram looks like this:

The application will plot the I-V curve of a PV module under standard test conditions.
Before going into details let us execute the model.

In the tool bar there are five buttons dealing with the execution of INSEL models.

Since pvi.vseit is the current not-yet-running INSEL model the Run button is
highlighted. Your first INSEL simulation run is now only one mouse click away. The
result should be a Gnuplot graph.

Tutorial

1.3. Running a first example 7

Should it disturb you that Gnuplot displays mouse coordinates in the lower left corner by
default, press the m key and they disappear. Pressing the m key again brings them back.

Another option to execute INSEL models is via the Debug button . In this case theDebugging
block which has the focus is highlighted by a green frame. The current values of all
inputs and outputs are shown next to the respective ports. In addition, INSEL will
display a list in the output window which block is called at the moment.

When you try out the debug mode, you can observeq qq q How much slower the execution of the model is.q qq q How the progress bar indicates the status of the running INSEL model.q qq q That the Pause button and the Stop button are highlighted during model
execution.

Obviously, a click on the Pause button pauses model execution and a econd click on the
Pause button continues model execution. The Stop button terminates model execution.
However, INSEL prompts you to confirm this action.

It is also possible to execute INSEL models in batch mode or in a terminal or DOS boxRun INSEL from
DOS prompt window. Such a terminal or DOS box window can be opened via the rightmost button

, for example. At this point it is sufficient to have a look at the usage of the insel
command.

Tutorial

8 1. Getting started with INSEL 8

More information on this topic can be found in section INSEL without GUI of the
Tutorial’s Module 13.

1.4 INSEL blocks in VSEit

As mentioned before, the graphical user interface of INSEL 8 – the INSEL window – is
based on the VSEit framework. Before we take a closer look at the usage of INSEL blocks
in VSEit, a basic understanding of the term INSEL block is required.

So let us ask the question “What is an INSEL block?” and try to answer it. Well, inQuestion
principal, an INSEL block is nothing but a representation of a mathematical function,
let’s say f .

Most functions depend on independent variables x = (x1, x2, . . .). In INSEL, theseInputs and outputs
independent variables are called inputs. When the function f is applied to x, the
resulting dependent variables y = (y1, y2, . . .) are called outputs. Please notice, that the
xi and yi are scalars (4-byte real numbers in INSEL).

Hence, we may write y = f(x), and interpret this as a representation of an INSEL block
named f with inputs x and outputs y.

In addition, the function – or INSEL block – f can have a set of constant parametersParameters
p = p1, p2, . . .) which influence the current value of the output y. Hence, we can write
y = f(x, p). Parameters in INSEL can be real numbers and strings.

Finally, blocks may have a history, which can make their results time-dependent, i. e.,History
every INSEL block can be represented by the equation

y = f(x, p, t)

In conclusion, it follows from these remarks that an INSEL block is a representation ofAnswer 1

Tutorial

1.4. INSEL blocks in VSEit 9

an explicit function, i. e., y = f(x, y, p, t) is not allowed.¹

Because it’s a graphical programming language, INSEL represents the equationAnswer 2
y = f(x, p, t) by a graphical element. This picture is called INSEL block, too:

x

?

f
p

?
y = f(x, p)

In the documentation, a rectangle is used to represent an INSEL block named f , for
example. Inputs x come into the block via arrows which point into the rectangle from
the top. Outputs y are represented by arrows pointing out of the block.

It is convenient to write the names of the inputs and outputs close to the corresponding
arrows. Parameters are frequently written at the right edge of a block. As mentioned
before, the number of inputs, outputs and parameters can range from zero to any
positive number and depend only on the specific requirements of the block f .

By convention, block names in INSEL use all capital letters.

In the simple case of the function y = sin(α) the block representation looks likeSIN block

α

?

SIN
[p]

?
sin(α)

The SIN block requires exactly one input, namely an angle α. It returns exactly one
output, the sine of α. The parameter [p] is written in square brackets, which means that
the parameter p is optional, i. e., not necessarily required.

Angles can be given in either degrees or radians. How does the SIN block know what is
meant? By default, the SIN block assumes that α is given in degrees. This is equivalent
to not specifying p at all, or by setting the parameter p equal to zero. If you want the SIN
block to recognize α in radians you have to set p equal to 1. Any other value for p will
result in an error message.

1 There are exceptions to this rule in INSEL, but this is not the place to discuss them.

Tutorial

10 1. Getting started with INSEL 8

1.4.1 The Palette

The most convenient way to access and use INSEL blocks is from the Palette.

A category (like Time, for instance) can be opened by a left-mouse click on the small +
symbol next to the icon of the category. An open category can be closed by a left-mouse
click on the small − symbol. The opened Time category with its types is shown in the
margin.

It contains the DO block (type Do), the CLOCK block (type Clock), the DOY block (type
Day of the year) and so on.

There are three ways to insert INSEL blocks—or more precisely, entities of the
block—into an INSEL model.q qq q A block² can be dragged from the palette into the work area by keeping the left

mouse button pressed. INSEL displays a small + sign next to the mouse pointer
once the mouse is moved into the work area. When the mouse button is released
an entity of the block will be placed in the work area.q qq q When a block (i. e., type) is selected from the palette by a left-mouse click, then a
click in the work area places a new entity of the selected block where you like.
The selection of the block in the palette disappears. More than one entity of a
marked block can be inserted in the work area as long as the Shift key on the
keyboard is kept pressed. In this case, each mouse click in the work area will place
one entity of the block in the work area.q qq q In order to create several copies of a block at once, select a type, the context menu
of the palette can be opened by a right-mouse click in the palette area, and choose
Create Entities.... In a dialog the number of required entities can be specified.

The new entities will be placed in the work area, arranged according to the
number of entities per row.

Customizing the palette

2 It would be more precise to say type, but in many cases it is more convenient to simply speak of blocks when
the context is clear enough.

Tutorial

1.4.2 Block entities 11

In INSEL 8 each user of a computer has an own copy of the palette. The location, where
the user palette is stored can be on the local machine or on a remote computer,
depending on the user-profile settings.

Palettes can be fully customized. Categories and types can be dragged with a left-mouse
click to a different position within the palette. Keeping the ctrl key pressed (cmd on a
Mac keyboard) creates a copy of the selected item instead of moving it.

The creation of new categories should be obvious. The position of the new categoryNew categories
depends on the current selection within the palette. If nothing is selected, the new
category will be created at the root of the palette.

All other palette operations can be made via the context menu, shown above. When oneNew templates
or more entities are selected in the work area, the Create Template... item is enabled.
Choosing it, opens a dialog in which the name for the new template can be specified.

Please notice, that a template can contain more than just one block. Therefore, a
template is not the same as a type.

The creation of new types is a very advanced option and is explained in Module 11 ::New types
Programming INSEL blocks of the Tutorial.

All user-defined categories, templates, and types can have user-defined icons, they canEtc.
be renamed and deleted at any time.

The factory setting of the palette can be rebuild. All user-made changes will be saved inRebuild palette
a category named SAVED ENTRIES. The rebuild process is initiated only after a
confirmation dialog.

1.4.2 Block entities

When INSEL blocks (entities) are created from the palette, they appear in the work area
as minimised icons. The following picture shows a DO block and a SCREEN block, taken
from the Time and the Inputs and Outputs category, respectively.

By default, each INSEL block is represented by a 32 times 32 pixel icon encapsulated in a
frame. Block inputs are displayed at the left border, block outputs at the right side of the
block’s symbol.

Block inputs and outputs can be accessed via ports. All ports in INSEL 8 have a tooltipPort tooltips

Tutorial

12 1. Getting started with INSEL 8

which displays helpful information to the meaning of the port. When the mouse pointer
is moved to a port, the tooltip is shown after a short moment.

Default port tooltips can be overwritten. A double-click on a port opens a dialog where
individual tooltips can be specified.

In order to connect an output port with an input port, click near one of the ports youConnecting blocks
wish to connect, keep the mouse button pressed and move the mouse pointer to the
other port to be connected. Once you are close enough a small rectangle will show up,
indicating that a release of the mouse button connects the selected ports.

Once connected, a connection line between input and output is shown. In general, an
input port can only be connected with exactly one output port while output ports can be
connected to an arbitrary number of different input ports.

Block connections can be deleted one by one. A mouse click somewhere on the route ofDeleting
connections the connection and choosing Delete from the Edit menu or pressing the Delete key will

dissolve the connection. When a block is deleted all its connections will be deleted
automatically.

If plenty of connection routes exist in a larger INSEL model, the routing algorithm – thatTrouble
is the part of VSEit which tries to find an ideal route for all connection lines – may not
be able to find such a route and uses a fall back. In this case a short diagonal connection
will be displayed which cannot be clicked on. If this happens, try to move the respective
block and find a better routing for the block and then delete the connection.

Blocks can be moved to a different position in the work area by dragging them withMoving blocks
pressed mouse button. The work area itself is infinite, which means, if you drag a block
out of the visible part of the work area scroll bars will appear automatically.

More than one block can be moved at a time by selecting them first.

A block can be selected by a mouse click on its icon. A frame will appear, indicating thatSelecting and
deselecting blocks a block is currently selected.

Tutorial

1.4.3 Entity editors 13

More than one block can be selected with the Shift key pressed. When more than one
block is selected, a click any block deselects all other blocks, their frames disappear.

Alternatively, blocks can be caught with a rectangle that is created in the work area with
the mouse, starting in the upper left corner and dragging the mouse pointer to a location
in the lower right of the starting point.

All blocks can be selected using the Select All context menu.

All selected blocks can be deselected by a mouse click on the white space of the work
area. The selection of individual blocks can be inverted by pressing the Ctrl key (or cmd
on Mac).

Selected blocks can be deleted by pressing the Delete key or via the Edit – Delete menuDeleting blocks
item or via a click on the Delete button in the tool bar. Please notice, that this action
cannot be undone in the current version INSEL 8.3.

1.4.3 Entity editors

A double click on any INSEL block in the work area opens its entity editor. The range of
entity editors varies from trivial to rather complex. This is the entity editor of the DO
block:

Most INSEL blocks (better: entities) have two tabs in common: a Parameters tab and a
Block tab.

The most important feature of the parameters pane is that you can access and modify allParameters pane
parameters of the coresponding INSEL block here. In case of the DO block these are the
Inital value, Final value, and Increment parameters.

It is possible to use names of global variables (created with the DEFCON block) in any of
the parameter fields. In the shown example, the DO block simply counts from one to ten.

A click on the Block tab displays the block pane.Block pane

Tutorial

14 1. Getting started with INSEL 8

The block pane of an entity editor shows some insight information for the INSEL block,
like the “real” Block name (DO, in this case), the name of the exported Fortran
subroutine or C function implemented in a dynamic library, and the so-called User block
number u, fixed by the inselEngine during model compilation.

For each INSEL block entity a user-defined Editor title can be provided. The text willEditor title
appear in the title bar of the entity editor and as a roll-over tooltip when the mouse
pointer is moved across the minimized block in the block diagram. If no editor title is
specified the roll-over tooltip displays the type name from the palette (e. g., Do), by
default. After the first compilation of the model the default roll-over tooltip will change
to type: u.

The Number of inputs and the Number of outputs can be specified in the block pane of theInput/output
interface entity editor – within block-specific limits for the number of allowed inputs and outputs.

The buttons in the bottom of the entity editor can be used for the following purposes
(from left to right).q qq q The Help button gives direct access to the INSEL block reference page

(Prerequisite: Adobe Reader must be installed).q qq q The Clone button opens another copy of the current editor. Changes made to any
copy of an editor are synchronised whenever the Apply or the OK button is
clicked.q qq q The Info button toggles the display of information to the block parameters, usually
the physical units of the corresponding parameters.q qq q The Reset button rejects all unsaved changes made to the parameter settings and
resets all attributes to the recently stored values.q qq q The Apply button saves the current values of all attributes without closing the
entity editor window.q qq q The OK button saves the current values of all attributes and closes the entity
editor window.

Well, when the model consisting of the DO block and the SCREEN block as used in theExecution

Tutorial

1.4.4 Errors in networks 15

discussion so far, is executed the result is displayed in the output window.

Compiling new-1.vseit ...
No errors or warnings
Running insel 8.3.0 ...

1.0000000
2.0000000
3.0000000

Normal end of run

Not very spectacular, but this example shows that everything seems to work.

1.4.4 Errors in networks

When a model has syntax errors like inconsistent number of inputs or parameters, for
example, a red frame around the block indicates the block which causes the problem.

In addition, a toogle button in the Types pane can be used to indicate incomplete types
and entities. If on, a small red square is shown in the upper left corner of entities which
are causing problems.

Tutorial

16 1. Getting started with INSEL 8

1.5 Macros

As mentioned above, a collection of INSEL block entities can be saved in the palette as a
template for further use. If, for example, we would like to rebuild the GAIN block

x1

?

. . . xn

?

GAIN
g

? ?
gx1 . . . gxn

from a CONST block – type Any constant, and a MUL block – type Multiplication.

we’d select both blocks and create a template via the palette’s context menu.

However, it might be preferable, to combine both blocks into a macro and save theCreating and
dissolving macros macro as template. We can do so by using the Edit – Create Macro menu or by using the

context menu with a right-mouse click on the empty work area.

This will create a macro with a default title bar.

The title bar shows three buttons. From left to right, they can be used to open the entity
editor of the macro , to maximize the macro to the full size of the current work area

, and reduce its size again . The right button minimizes the macro . All other
properties of the macro are inherited from ordinary entities.

Please observe that it is not necessary to add a macro input and a macro output port for
the MUL block, because inner ports in the macro can be connected to other blocks
across the border of the macro.

Only if you wish to be able to connect to the MUL block even when the macro is
minimized the corresponding ports should be created via the macro’s Edit function and
its blocks pane. In this case, the minimized macro looks like any other INSEL block, as
shown in the margin.

An option to create empty macros from scratch is to use the Macro type from the
palette’s User blocks category.

Tutorial

1.5. Macros 17

Macros can be created within macros. There is practically no limit for the depth of
nested macros in INSEL.

One or more selected macros can be dissolved via the Edit – Dissolve macros menu or the
macro’s context menu.

In addition to using the buttons in the macro’s title bar, the size of an opened macro canEditing macros
be modified by dragging its lower right corner with the mouse.

Macros can be moved by picking them up at the title bar or their frame, as indicated by a
hand symbol of the mouse pointer.

Blocks can be moved from the work area into a macro by dragging them to the macro
area. This is possible only if the target macro is opened. The drop option is indicated by
a frame around the target macro. Please observe that any previous port connections will
be conserved and that the ports are adapted accordingly. The same applies, when blocks
are dragged out of a macro.

und sie bewegen sich doch (die Ports).

mit rev. 868 sollte nun das Ändern der Reihenfolge von Makro-Ports möglich sein. Dazu
muss der Benutzer nur CMD/CTRL drücken, den Port anfassen und vertikal
verschieben. Statt CMD/CTRL geht auch Klicken und Halten auf dem Port bis der
Curser wechselt. Achtung: Beim Editieren der Makro-Hierarchie gibt es Situationen, in
denen das Programm die Reihenfolge der Ports selbst wieder neu bestimmt.

Mit rev. 869 verschwinden Ports nicht mehr, wenn der letzte innere Link verschwindet.
Achtung: This way, “orphan” ports may be created. These can only be deleted by shifting
them to the bottom of the makro and, then, set the number of ports to a suited value.

Tutorial

2 :: INSEL programming concepts

The INSEL idea is based on a modular, block-oriented concept which adapts structured
programming – a programming method which restricts algorithms to three basic
programming structures, i. e., (i) sequence structures, (ii) if-then-else structures, and (iii)
loop structures – to block diagrams. In computing science it has been shown, that all
numerical problems can be solved with these three basic structures. Therefore, INSEL is
a general-purpose programming language, which can – in principle – be adapted to any
numerical task.

2.1 INSEL block groups

Although all INSEL blocks appear as named rectangles with inputs, outputs and
parameters, each block belongs to a certain block group.

The following six block groups exist in INSEL:q qq q Constant blocks or short C-blocksq qq q Timer blocks or T-blocksq qq q Standard blocks or S-blocksq qq q Loop blocks or L-blocksq qq q Delay blocks or D-blocksq qq q If blocks or I-blocks
As the name indicates already, the group of S-blocks is the least specific. In Module 1 weS-blocks
have used the SIN block and the PLOT block, for instance. There is nothing special about
them. They are typical S-blocks. When the SIN block gets an input value α, it calculates
the corresponding sine value and connects the result with the block’s output – finished.
When the PLOT block gets a data point with coordinates x and y as inputs, it plots the
data point – finished. But who delivers the inputs and how often – and who decides
when the simulation run is through?

In the simple DO–SCREEN example of Module 1 we have specified by the parametersT-blocks
(initial value 1, final value 10, increment 1) the DO block “fires” 10 times: a 1 in the first
step, a 2 in the second step, a 3 in the third step, and so on until the block outputs a 10 in
the 10th step. Then there is nothing left to be fired – hence the DO block sends a signal
to the inselEngine to end the run. Blocks having the ability to control a simulation
model are called timers, or Timer blocks or just T-blocks.

It is not compulsory to include a Timer block in an INSEL application. The following
example does not use a Timer block, for instance.

2.2. Basic photovoltaics 19

This simple application uses three blocks:q qq q The CONST block, which just delivers a constant output as specified by a
parameter, 45 (which we humans interpret as 45◦) in this case.q qq q The SIN block, which calculates the sine of its input.q qq q The SCREEN block, which can be used to display alphanumerical information on
the computer’s screen.

Test it. You find the CONST and SIN block in the Mathematics category of the palette
under Constants > Any constant, and under Trigonometric functions > Sine, respectively.
The SCREEN block can be found in the Inputs and outputs category as Screen output.

When you run the model you will see the output 0.70710677 from the SCREEN block,
which means that you have calculated sin(45◦) = 0.70710677.

INSEL has executed every block one time: The CONST block which defines the outputSorting
45, the SIN block which calculates sin(45◦) and the SCREEN block which displays the
result – ready. Please observe that INSEL calls the blocks exactly in the order CONST,
SIN, SCREEN, no matter in which order you have constructed the block diagram.

This means that there must be some mechanism in INSEL which converts a block
diagram description into a calculation list – this mechanism is called sorting algorithm
and is an integral part of the inselEngine. You will learn more about the inselEngine in
due course.

No matter whether there is a T-block in a model or not the CONST block always needsC-blocks
to be executed only once and never again. Blocks with this property belong to the group
of C-blocks.

We can conclude that we have seen examples of a C-block (the CONST block), S-blocks
(the SIN and SCREEN block), and a T-block (the DO block). This Module deals only with
these three block types. Loop, Delay, If, and Macro blocks will be handled later.

2.2 Basic photovoltaics

So far, we have used only quite primitive blocks. One of the nice aspects of INSEL
however, is that basically all blocks look alike and can be treated more or less in the
same way, regardless of whether they are primitive like the CONST block or more
complex like the PVI block, which we had used already in the previous Module.

The PVI block is located in the category Electricity under Photovoltaics > Photovoltaic
current (c-Si). This is the design of the block:

Tutorial

20 2. INSEL programming concepts

V

?

G

?

T

?

[vw

?

t]

?

PVI
p1 . . . p30

?
I

?
Tc

As indicated by the bitmap of the PVI block in the left margin, this block simulates the
behavior of solar cells – PV is short for photovoltaics, i. e., the direct conversion of
electromagnetic radiation into electricity. The sketch of the PVI block shows, that this
block requires (up to) five inputs and – don’t get shocked – 30 parameters.

With this information the block calculates two outputs, the PV current I in ampere (this
I gives the block its name) and the cell temperature Tc in degrees Celsius. PVI is also a
Standard block.

In order to use the block it is necessary to connect at least three inputs: the voltage V of
the device in volt, the global radiation G in W/m2. T stands for a temperature in degrees
Celsius. This input has a specific role and will be discussed later.

Concerning the parameters: The electric properties of the solar cell are modeled by aTwo-diode model
rather detailed physical model, well-known as the two-diode model. For the calculation
of the thermal properties of the device an energy-balance differential equation is used.
In addition, the block can be used for any particular electrical connection of cells and
modules in series and in parallel. All in all this gives 30 parameters.

We will not go into the details here. More information about PV modeling in INSEL can
be found in Module .

INSEL contains more than five-thousand parameter sets for practically all modules that
are available on the market or have ever been produced. The photo shows one of these
modules – the Siemens module SM 55.

For historic reasons, the default parameter set used by the PVI block simulates exactly
this module.

The “physical” parameters can be seen after a double-click on the PVI block on the
parameters pane:

Tutorial

2.2. Basic photovoltaics 21

The “variable” parameters can be accessed via the Simulation pane:

As we have seen, the PVI block calculates the PV current I as a function of the voltage
V . Analogue, there is a block called PVV (Photovoltaic voltage (c-Si)) which calculates
the PV voltage V as a function of the current I . It always depends on the actual
problem, which one is better to use.

We have already used the PVI block in the previous Module for a plot of theI-V curves
voltage-current characteristics, the I-V curve under standard test conditions STC

Tutorial

22 2. INSEL programming concepts

(defined as global radiation equal to 1000 W/m2 at a spectral distribution of AM 1.5 and
a module temperature of 25 ◦C). We repeat the block diagram:

The DO block is used to vary the voltage in a range between 0 and 25 volt in steps of 10
millivolt. Two CONST blocks provide values for the global radiation and the module
temperature. The PLOT block is used to display the I-V curve.

The parameter Temperature mode is set to IN3 mode, by default, which means that the
module temperature is given by input number 3 – which comes from a CONST block
with value 25. The other temperature modes will be discussed later.

Now, please reconstruct the block diagram from scratch and run it until you see theExercise
I-V curve displayed by the PLOT block.

It is now easy to calculate and plot the DC (direct current) power output PDC = I · V ofDC power
the module as a function of the operation voltage. All we need to do is to multiply the
first output of the PVI block (the current I) with the output of the DO block (the voltage
V). This can be done with the S-block MUL which we know already from the previous
Module.

This block diagram solves the problem and shows the DC power as a function of the
voltage.

Tutorial

2.3. The INSEL concept of time 23

We see from the graph that the output power depends very much on the operation
voltage with a maximum of about 53 Wp (Watt peak) close to 17 volt. This point (Vm, Im)
is called the maximum-power point in photovoltaics and defines the peak power or
nominal power of the module under standard test conditions. Under real operating
conditions the maximum-power point varies, since it depends on global radiation and
module temperature.

In most real PV generators there will be a device called maximum-power-point tracker
which will always operate the generator close to this point. In a numerical simulation
this operating point must be found by an iteration process. The INSEL block which
performs this iteration is called MPP. This Loop block will be handled in Module .

There is another INSEL concept that can be learnt from the PVI block.

2.3 The INSEL concept of time

In a real-world PV generator the module temperature will depend on the weather
conditions and will be a function of time. When you look at the temperature modes of
the PVI block, you find the DEQ mode (differential equation). In this mode the module
temperature is calculated as a function of voltage V , global radiation G, ambient
temperature Ta, wind speed vw, and time t.

So far, the PVI block we used had only three inputs. Hence, two more inputs for the
wind speed vw and time t are required. Remember, we can define the number of block
inputs through the blocks pane.

In the classical simulation environments like CSMP and SPICE, for example, and even inTime in seconds
most modern ones like MATLAB and Simulink time plays an extra-ordinary role. In

Tutorial

24 2. INSEL programming concepts

INSEL time is just a variable among others. It is always an explicit block input, which
has a time-dependent behavior. As a general rule, time in INSEL always runs in seconds.

In temperature mode DEQ the PVI block must be supplied with a time input in seconds.Variable time steps
If, for example, you want to run a PVI block in time steps of one hour, you must deliver
values like 0, 3600, 7200, and so on to the PVI block.

Since the PVI block is able to remember the value of the time input of the latest call, the
block itself can calculate the actual time difference between the previous call and the
actual one, i. e., the time step. A consequence of this concept is that the time steps of a
simulation run in INSEL do not at all need to be constant.

The PVI block can deal with any time step, no matter whether the time step is in the
range of seconds or hours.

It’s time for a concrete example. Let us observe how an SM 55 PV module heats up withINSEL Lab
time.

You will gain the highest benefit from INSEL when you do not think of writing
simulation applications, but perform “close-to-real experiments” in a laboratory.

Let us place a Siemens SM 55 module in a laboratory environment, and wait until it is in
equilibrium with ambient conditions, assumed to be Ta = 25 ◦C, no air movement, i. e.,
vw = 0 m/s and completely dark, i. e., G = 0 W/m2. This is equivalent to setting the
initial value for the cell temperature parameter of the PVI block to 25 degrees Celsius.

We then switch on a light source which illuminates the module with 1000 W/m2, for
example. In a real experiment we could use a PT-100 for the module temperature
measurement, in INSEL the PVI block with the parameters of the Siemens SM 55 module
provides the cell temperature Tc as a second output.

After about one hour we would expect equilibrium conditions for our experiment.
Hence, let us run the simulation for one hour. Would you like to solve the problem
yourself or just look at the solution?

Here is our solution:

Tutorial

2.3. The INSEL concept of time 25

The corresponding block diagram looks like this und moechte noch verschoenert
werden:

There is one last uncovered temperature mode of the PVI block, the NOCT mode. NOCTNOCT temperature
is short for nominal operating cell temperature. It is defined as the equilibrium module
temperature under a global radiation GNOCT = 800W/m2, ambient temperature of 20
degrees Celsius and a wind speed of 1m/s.

In NOCT mode the PVI block makes the linear interpolation

Tc − Ta = (TNOCT − 20 ◦C)
G

GNOCT

You should quickly check the module temperature as a function of global radiation from
0 to 1000 W/m2. For the voltage you can use 17 volts – we have seen before that the
voltage near the maximum power point of the module is of that order.

Tutorial

26 2. INSEL programming concepts

Adapt the DEQ mode example to NOCT conditions and compare the equilibriumExercise
temperature with the NOCT value.

If you use the ATEND block with input Tc and connect its output to a SCREEN block,Hint
the SCREEN block displays only the last calculated temperature value. You find the
ATEND block under the Mathematics > Logics category as At end. The ATEND block is
already a first example of an I-block which will be discussed in more detail in Module .

The result is 38.74 degrees Celsius compared to an NOCT of 47 degrees – frustrating orSolution
wrong?

This is the corresponding block diagram welches auch noch verschoenert werden
moechte:

2.4 Nested Timer blocks

Timer block can be nested. This means that two or more T-blocks can be connected in
series but not in parallel.

It’s best to explain this with a concrete example: Assume that we want to use the PVI
block to display not only one I-V characteristic but a set with the global radiation as
curve parameter. In the first place, one would simply replace the CONST block for the

Tutorial

2.4. Nested Timer blocks 27

radiation by another DO block, and set the parameters of the new DO block to 200, 1000,
with an increment of 200 W/m2, for instance.

When you run this block diagram, INSEL will generate an error message which says
“Too many timer blocks specified”. Why?

The two DO blocks are not connected in series but in parallel. It is not clear how INSEL
should handle the model. Shall INSEL first fix the voltage value to zero and then run
through all radiation data, return to the voltage block, increment the voltage to 0.01 volt,
run through all radiation data again, and so on? Or shall INSEL first fix the radiation
value to 200 W/m2 and then run through all voltage values, return to the radiation block,
increment the radiation to 400 W/m2, run through all voltage values again, and so on?

From a curve plotting point of view, the second option is clearly better. But how can we
express that we prefer the second option?

One of the key concepts in INSEL is that blocks cannot be executed before all blockKey concept
inputs are “known,” i. e., have values. So, if we add a new input port to the DO block
which varies the voltage and connect it to the output of the DO block which varies the
radiation, then the block for the voltage variation depends on the radiation block – they
will be connected in series, nested!

Hence, the input of the DO block serves the purpose of arranging the two DO blocks in
a fixed order.

When you run the model you will see some scrambled lines like this:

Tutorial

28 2. INSEL programming concepts

What happened? We have five blocks in the model:q qq q A CONST block which defines the module temperatureq qq q A DO block which varies the global radiationq qq q A DO block which varies the voltageq qq q A PVI block which calculates the PV currentq qq q A PLOT block which plots the data points

How does INSEL execute the blocks? The order in which the blocks in a model areCalculation list
executed is called calculation list in INSEL It can be displayed via the Simulation > Show
calculation list menu.

Number Block Group Jump

5 CONST C 1
1 DO T 1
2 DO T -1
3 PVI S 1
4 PLOT S -2

We see that at first the constant temperature value is set, then the first DO block with
user block number 1 sets the radiation to 200 W/m2, then the second DO block number 2
outputs a voltage of 0 V, then the PVI block calculates the PV current I , then the PLOT
block plots the first data point (x = 0, y = Isc), the short-circuit current. And then?

The last column in the calculation list is the so-called jump parameter. The value for the
PLOT block is −2, i. e., INSEL returns control to the lower DO block number 2 in the

Tutorial

2.4. Nested Timer blocks 29

calculation list. The DO block 2 increments the voltage to 0.01 V, the PVI block
calculates the corresponding current, and the PLOT block plots the second data point,
while drawing a linear interpolation line between the first and the second point.

This process continues, until the PLOT block gets the last data point from DO block
number 2, which is equal to 25 V, and plots it – again with a short linear interpolation
line between the last value (x = 24.99, y = 0) and the actual point. And then?

INSEL again returns control to DO block 2. But this block has nothing left to do. So, it
gives control to the next “upper” T-block, which is DO block number 1. This block
increments the radiation to 400 W/m2, and DO block 2 gets control again.

The DO block performs a reset since its input has a changed value and outputs its initial
value again, PVI then calculates the short-circuit current Isc(400 W/m2), and the PLOT
block gets the next data point (x = 0, y = Isc(400 W/m2)) and operates as always: draws
a linear interpolation line between the last point and the actual point – et voilà!

The PLOT block had no chance to recognize that the radiation has changed and that weParametric plot
wanted to see a new line, i. e., simulate a pen-up pen-down operation.

A way out is to “inform” the PLOT block about the curve parameter via the output of the
DO block which varies the radiation. This means that besides the x- and y-coordinate
the PLOT block requires a third input. The name of the block with such an extra input is
PLOTP. Both, the PLOT and the PLOTP block can be found in the Inputs and outputs
category of the palette as types Gnuplot graph and Gnuplot graph (parametric),
respectively.

So, replace the standard PLOT block by the parametric PLOTP block. The first input is
the curve parameter – the output of DO block number 1 – the second input is the
voltage – the output of DO block number 2, the third input the corresponding current.
Now the result looks as it should look like.

Tutorial

30 2. INSEL programming concepts

2.5 The Timer blocks CLOCK and FDIST

So far, the only timer block we have used is the DO block. A second example for an
INSEL T-block is a block called CLOCK, found in the Time category as Clock. It behaves
very much like the one you are probably wearing around your wrist: It runs through
time in hours, minutes, and seconds, every day, month and year. The main difference is
that a wrist-watch shows the time in which we humans are stuck. A simulation of a
clock is much more flexible. We can let it run from any starting point to an end in any
time step we like.

[t]

?

CLOCK
p1 . . . p13,
unit(∆t)

a
?

M
?

d
?

h
?

m
?

s
?

Start year, month, day, hour, minute, and second, end year, month, day, hour, minute,
and second is the correct order of the parameters, followed by an increment ∆t and a
string for the unit of ∆t. The unit must be one of these: a (for years), M (for months),
d (for days), h (for hours), m (for minutes), or s (for seconds). If for example, we let the
CLOCK run for one day from midnight to midnight in steps of 3 hours, for example, this
object does the job:

Tutorial

2.5. The Timer blocks CLOCK and FDIST 31

We have added a SCREEN block so that we can observe what the CLOCK block does
exactly.

Compiling clock.vseit ...
No errors or warnings
Running INSEL 8.3 ...
2011. 10. 30. 0. 0. 0.
2011. 10. 30. 3. 0. 0.
2011. 10. 30. 6. 0. 0.
2011. 10. 30. 9. 0. 0.
2011. 10. 30. 12. 0. 0.
2011. 10. 30. 15. 0. 0.
2011. 10. 30. 18. 0. 0.
2011. 10. 30. 21. 0. 0.
Normal end of run

Nothing spectacular happens. But you should take note of some details.q qq q We let the clock run exactly until 24:00:00 of 30 October 2011. This is absolutely
equivalent to running the clock until exactly 00:00:00 of 31 October 2011.q qq q The CLOCK block runs in logical time steps and we are going to use it for exactly
that purpose in most cases, for time step simulations. Logically we have defined a
constant time step of three hours. The CLOCK block outputs the time information
only once per time step and the time which is on output then is always the “left
end” of the time interval, i. e., our first time interval is between 00:00:00 and
03:00:00 o’clock, but the CLOCK shows 00:00:00 “all the time.”

As a consequence, the last output of the CLOCK is at 21:00:00 for another three
hours. At midnight, the clock stops. When you count the lines that the SCREEN

Tutorial

32 2. INSEL programming concepts

block writes you find eight lines times three hours gives 24 hours – exactly what
we wanted. Mathematically spoken, the CLOCK block runs through the interval
with the left end closed, the right end open, i.e. [00:00:00,00:00:00).q qq q We have used the Format string (6F6.0) in the SCREEN block’s parameter. This is aStar format
Format string in Fortran language standard. Fortran formats will be discussed in
more detail in the next Module “Reading and writing data files.”

For the time being, you should note that there is a so-called star format, which
you can use easily by just typing in an asterisk * in the parameter field. Please try
it, the star format is really useful for output when you do not know the order of
magnitude of your results in advance.

You may ask “What are applications of the CLOCK block?” Here comes one which opens
a huge field of applications of the block: Solar energy applications. In INSEL almost all of
them make use of the Gregorian calendar.

2.6 Solar radiation

A simple example for a solar energy application is the block GOH which calculates theRadiation outside
atmosphere extraterrestrial radiation – that is the solar radiation in Space outside the Earth’s

atmosphere.

a

?

M

?

d

?

h

?

[m

?

s

?

0/1]

?

GOH
φ, λ, Z

?
Goh

Inputs to the block are basically the outputs of the CLOCK block – at least the first four
inputs are necessary. Required parameters are latitude φ, longitude λ, and time zone Z
of the observer’s location.

The latitude of an observer is defined from the equator towards the poles, northernLatitude, longitue,
time zone hemisphere positive, southern hemisphere negative – Stuttgart in Germany has a

latitude of about 48.77◦ north, for example. The longitude is defined as west of
Greenwich, a cosy suburb of London in the U.K. We have to go almost all the way
around the globe to reach Stuttgart at its longitude of 350.82◦, but in INSEL we can also
use −9.18◦ as longitude value for Stuttgart.

Time zones are also defined with respect to Greenwich defined as time zone zero –
known as Greenwich Mean Time GMT – with approximately 15 degrees per time zone.
The time on our German clocks shows Central European Time CET which corresponds
to time zone 23. During summer we use daylight-saving time, which means we bring the

Tutorial

2.6. Solar radiation 33

time on our watches one hour ahead in spring, and put it back in fall. The last input of
the GOH block is 0 by default (i. e., does not consider daylight-saving time). If you
connect a one with this input GOH interprets the given time as daylight-saving time.

Let us calculate the annual course of the extraterrestrial radiation on a horizontal
surface at noon for our home location – in our case this is Stuttgart with the given
geographical parameters.

You find the DOY block (Day of the year) in the Time category, block GOH
(Extraterrestrial irradiance on a horizontal surface) in category Meteorology – Solar
radiation. The result is shown in the next graph.

You should grasp two points from this example:q qq q A technical point: The CLOCK block is nice in time handling, it allows us to think
of time like we are used to it. But for numerics it is rather bad. When we plot time

Tutorial

34 2. INSEL programming concepts

series, we need a continuous signal, not something strange like the Gregorian
calendar with all its exceptions, like leap years etc.

INSEL offers several routines (blocks, of course) that handle this aspect. In the
above example we have used the day of the year block DOY which converts a
Gregorian calendar date to a continuous signal. Similar blocks are the hour of the
year block HOY, and minute of the year block MOY, for example – all found in the
Time category.q qq q A point of general interest: From the extraterrestrial radiation plot you can
observe that in our place (Germany) the extraterrestrial radiation at the beginning
of the year is much lower than in the middle of the year – there is a factor three
between the values. The reason – which corresponds with our every-day-life
experience – is due to the fact that in summer the Sun is much “higher” as
compared to the winter case.

The exact position of the Sun at any time can be calculated with the Standard blockSolar position
SUNAE (Meteorology – Geometry – Position of the Sun).

a

?

M

?

d

?

h

?

m

?

s

?

0/1

?

SUNAE
Model,
φ, λ, Z?

ψ
?
α

?
δ

?
ω

The meaning of SUN in the block name is self-explaining, A stands for azimuth, in INSELHorizontal system
denoted by the Greek letter ψ, E stands for elevation, in INSEL denoted by α. Azimuth
and elevation is one coordinate system which can be used to describe the solar position
relative to a human observer. It is a very natural coordinate system, because it puts us as
the observer into the center. The azimuth is the direction in which we see the Sun, rising
in the east (ψ ≈ 90◦), moving via south (ψ = 180◦) and setting in the west (ψ ≈ 270◦).
Please notice that observers in the southern hemisphere have a different view.

The SUNAE block also outputs the solar position in a second coordinate system, whichEquatorial system
uses declination δ and hour angle ω as coordinates.

To understand this coordinate system is a bit less intuitive. But imagine to be located at
the center of the Earth, with the Earth as a globe made of glass with a line grid for the
latitudes and longitudes on its surface. Every day the Sun revolves once around this
glass globe, following (almost) exactly a constant latitude. The angle between the
equator and this latitude is called declination δ and is independent of any observer on
the Earth’s surface. We know that it varies between +23.45◦ (our northern hemisphere
summer) and −23.45◦ (our winter).

Tutorial

2.6. Solar radiation 35

The other angle, which describes the movement of the Sun around the Earth during a
single day is the so-called hour angle ω. When a second observer is placed on the glas
globe, his position and the moment when the Sun crosses this observer’s longitude
defines the hour angle ω = 0◦. Starting from here, the hour angle is counted positive as
it follows the Sun on its way around Earth. The hour angle ω = 0◦ defines the true solar
noon of the observer on the surface.

The following example shows the four coordinates for one day, 1 January 2012 at the
location of Stuttgart, Germany.

This is the result.

You find the SUNAE block in the Meteorology category under Geometry > Position of the
Sun.

Three approximations for the calculation are currently implemented: The model of
Spencer is the fastest in calculation time but the least accurate, the model of Holland and

Tutorial

36 2. INSEL programming concepts

Mayer is a good compromise between calculation time and accuracy. The model of
Michalsky is rather high in accuracy, it is the algorithm which is used in the
astronomical almanacs.

With INSEL we could use the SUNAE block for the operation of a computer-driven
pyrheliometer (a device to measure the direct solar radiation, which requires accurate
two-axis tracking of the solar position), but this is beyond the scope of this Module.

If you are further interested in an understanding of the movement of the Sun, there is aSunOrb
nice tool called SunOrb that has been programmed at the University of Bochum,
Germany in the group of Prof. Dr.-Ing. H. Unger. The program can be used to calculate
and draw solar diagrams like the following one for Stuttgart.

You find SunOrb under the Tools menu or you can start it directly from the tool bar with
a click on its icon .

As an exercise with the SUNAE block you can compare the accuracy of the threeExercise
models. (Hint: Use three copies of the SUNAE block, each with a different model. Take
the Michalsky model as reference and calculate differences to the coordinates of this
model. If you follow this, you will need a Summation block SUM and a Change sign
block CHS – you find both of them under the Math menu.)

We provide four solutions in the examples\tutorial\module2 directory in the filesSolutions
sunae3a.vseit (azimuth), sunae3e.vseit (elevation), sunae3d.vseit (declination),
sunae3o.seit (hour angle).

Tutorial

2.6. Solar radiation 37

As a result of the comparison for the azimuth angle, for example, we get this graph:

It shows the deviation of the azimuth angle calculation against the Michalsky model
(red), the Spencer model (blue) overestimates the azimuth angle by up to 0.5 degrees on
our reference day, 1 January 2002 in Stuttgart, whilst the deviation of the Holland/Mayer
model (green) is almost not visible.

There are many more applications of the CLOCK block. We come back to some others in
Part II.

Let us now turn our attention to the FDIST block, a Timer block which can be used toRandom numbers
calculate the frequency distribution of any time series.

For the time series generation we use two random number generators, one that gives
uniformly distributed, and one that gives normal or Gauss distributed random numbers.
The first block is called RAN1, the second is called GASDEV, both are Standard blocks.
You find these two blocks and the T-block FDIST in the Statistics category under
Random numbers and Distributions, respectively.

We start with the RAN1 block for the generation of uniformly distributed numbers.

[nb]

?

RAN1
[Iseed]

?
x

Tutorial

38 2. INSEL programming concepts

The block has an optional input, and an optional parameter Iseed, which can be used to
initialise the block – different instances of the block can be used with different Iseed
values and generate different time series, but all will have a uniform distribution. We
start with 1000 numbers.

We have chosen a value of 1536 for Iseed. Please notice that the generated time series
depends only on the Iseed value, so that the “random” numbers can always be uniquely
reconstructed. The time series plot looks really random:

Maybe you have been wondering about the fact that we used the RAN1 block withoutDifference between
C-blocks and

S-blocks
an actual input. Since RAN1 is an S-block, it is automatically called by the inselEngine in
every time step (of the main timer, which is the DO block in this case) of the simulation
run. This is the main difference between C-blocks and S-blocks.

Now let’s have a look at the FDIST block.

x

?

FDIST
xmin, xmax,∆x [, s1, s2]

?
xi

?
N(xi)

?
N

As expected, it has one input x for one value of the time series per call. Through theFrequency
distributions

Tutorial

2.6. Solar radiation 39

parameters we can fix the interval [xmin, xmax] for the bins width ∆x. Let us skip the
optional parameters for the moment. Well, how do we expect the block to operate? We
will deliver a time series (our RAN1 numbers) to the block’s input. So far, so good. But
when and how shall the block bring the results to the outputs?

Obviously, the block has to “wait” until the end of the time series to be then “informed”
by the inselEngine that it is time to start the action, and that means: Play the role of a
timer and deliver – one after the other – the x-coordinate xi, starting with i = 1, the
normalised number of data N(xi) in bin i. In addition, the total number of data N is an
output which can be used for a the calculation of the absolute number data in a bin, for
instance.

Due to the behavior of FDIST we can directly connect a PLOT block to the outputs of
FDIST. Please notice that it is not necessary to connect the DO block with any other
object. Due to its presence it generates a number of steps according to its actual
parameter settings.

The result for 1000 numbers looks as follows.

Tutorial

40 2. INSEL programming concepts

For 100 000 numbers the distribution is already much smoother.

Plot the Gauss distribution on the basis of one thousand, ten thousand, one hundredExercise
thousand and one million normal distributed random numbers.

See file fdist.vseit in the examples directory.Solution

We could continue this Module with an extensive collection of examples for different
blocks, but C-blocks are rather boring (and there aren’t too many in INSEL), concerning
T-blocks we have already looked at some important ones, and S-blocks? Well, there are

Tutorial

2.6. Solar radiation 41

some hundred available in the different toolboxes. Perhaps, at this stage you should take
your time and go through the block reference of INSEL. This will give you an overview
on some of the basic blocks. When you do so, check the block group first and skip all
non C-, T-, and S-blocks in the first run.

Questions q qq q There are seven different block groups in INSEL. Three of them have been
discussed in detail: C-blocks, S-blocks and T-blocks. Can you explain in your
words what the difference is?q qq q The PVI block has been used to calculate the characteristics of photovoltaic
modules. Could you generate a graph which shows the I-V characteristic of a PV
module for different module temperatures in one graph?q qq q When you create an INSEL block diagram INSEL sorts your model and creates a
calculation list. Can you set up the calculation list for the example on page 35 that
we used to show the four coordinates of the SUNAE block for one day, 1 January
2002 at the location of Stuttgart, Germany?

Tutorial

3 :: Reading and writing data files

In this module, you will learn how to read data from files and write data to files and how
these data can be used in simulations. We will concentrate on data files which contain
meteorological data since meteorology is one of the most widely-spread applications of
INSEL.

Reading files means that you enter explosive ground. When you do not exactly know,A general warning
what kind of information is saved in a data file that you are going to read, it is quite
probable that your program crashes with a message similar to this:

Luckily in computing this means that only your program smashes, or if the blunder is
too bad, you have to restart your computer.

The story of writing data is even more dangerous. Writing data to files means that you
are manipulating bits on the hard disk of your computer. You can imagine, that if – by
accident – you change some of the bits in the Windows operating system, this may lead
to a really serious crash. In the worst case, you can throw away your computer and buy
a new one.

So, it’s really worth to study this Module with the necessary care!

Let us start with the seemingly trivial question “What is a data file?”

Whenever you work with a computer you work with files – it is impossible to doNaming
conventions something with a computer that is not related to files. Under Windows the Explorer –

which probably everybody has seen crash due to wrong file handling – is a tool which
lets you organise millions of files. All these files have names following a specific naming
convention.

In the “historic” age of the eighties and nineties of the 20th century the naming
convention was: A file name may have a maximum of eight characters, followed by a dot
and a file extension. The file extension was restricted to a maximum of three characters.

43

Under Windows a file could be saved under any path name with the same naming
convention.

Today, everything is more comfortable – a file name can be quite lengthy and may even
contain space characters, more than one dot and the length of path, name and extension
is practically unrestricted. INSEL 8 can deal with any naming convention.

We are used to distinguish files by their extension: When we see a file with extension
.doc we think “Aah, a Word document!,” or a file with extension .pdf “Of course! This
is an Acrobat file.” Maybe one day people think “Yes, an INSEL file – what else!,” when
they see the extension .insel.

What makes up data files is that their content follows conventions, too. Like Enigma filesASCII code
are encoded in a specific “secret” code. One example for standardised code is the ASCII
code: Every symbol – like letters and digits – is decoded by a series of seven bits, which
can take either a value of zero, or a value of one – the dual system. Extended ASCII code
uses eight bits, so that a larger set of symbols can be expressed. Eight bits are commonly
called a byte. The trend goes to Unicode which uses sixteen bits, i. e., two bytes.

Hence, we can answer the question “What is a data file?” with the statement “A data file
is nothing but a stream of bits. The meaning of this data stream needs to be known
exactly – otherwise the data stream is completely useless.”

The following lines show the head of a file that has been recorded in Oldenburg, Northmeteo82.dat
Germany, in the year 1982 – four years before INSEL 1.0 – named meteo82.dat.
1 182 1 0. 0. 0. 0. 0. 4.5-40. -40.0-40.0 265. 4.4
1 182 2 0. 0. 0. 0. 0. 3.8-40. -40.0-40.0 255. 4.3
1 182 3 0. 0. 0. 0. 0. 3.4-40. -40.0-40.0 255. 2.8
1 182 4 0. 0. 0. 0. 0. 3.1-40. -40.0-40.0 225. 2.3
1 182 5 0. 0. 0. 0. 0. 3.0-40. -40.0-40.0 225. 2.6
1 182 6 0. 0. 0. 0. 0. 2.9-40. -40.0-40.0 225. 3.0
1 182 7 0. 0. 0. 0. 0. 3.2-40. -40.0-40.0 225. 1.9
1 182 8 0. 0. 0. 0. 0. 2.8-40. -40.0-40.0 205. 2.5
1 182 9 0. 0. 1. 0. 0. 2.3-40. -40.0-40.0 205. 2.4
1 18210 15. 6. 6. 3. 0. 2.7-40. -40.0-40.0 195. 3.0
1 18211 40. 28. 21. 19. 6. 3.4-40. -40.0-40.0 195. 2.6
1 18212 54. 25. 18. 15. 5. 3.8-40. -40.0-40.0 195. 1.2
1 18213 60. 24. 18. 15. 4. 4.3-40. -40.0-40.0 85. 0.6
1 18214 44. 17. 13. 10. 1. 3.9-40. -40.0-40.0 75. 1.2
1 18215 16. 9. 8. 5. 0. 3.9-40. -40.0-40.0 85. 1.1
1 18216 0. 3. 4. 1. 0. 4.0-40. -40.0-40.0 85. 1.0
1 18217 0. 0. 0. 0. 0. 4.1-40. -40.0-40.0 85. 1.3
1 18218 0. 0. 0. 0. 0. 4.1-40. -40.0-40.0 85. 1.2
1 18219 0. 0. 0. 0. 0. 4.3-40. -40.0-40.0 65. 0.9
1 18220 0. 0. 0. 0. 0. 4.2-40. -40.0-40.0 165. 1.0
1 18221 0. 0. 0. 0. 0. 4.4-40. -40.0-40.0 175. 1.2
1 18222 0. 0. 0. 0. 0. 4.9-40. -40.0-40.0 195. 1.9
1 18223 0. 0. 0. 0. 0. 5.2-40. -40.0-40.0 225. 2.2
1 18224 0. 0. 0. 0. 0. 5.3-40. -40.0-40.0 225. 2.5

Tutorial

44 3. Reading and writing data files

Without going into the details of this file for the moment some comments may be useful.q qq q As you see, the file is organised in well-formatted “lines.” Every line is usuallyRecords
called a record. So we’d better say: This example shows the first 24 records of the
file meteo82.dat.q qq q Well-formatted lines means that all “columns” look alike, i. e., the decimal points
are all in the same column, every line (more accurate: every record) has the same
length. Take your time and count the number of columns. You should come to a
value of 64 columns per record, including the blank or space characters.

Every column represents one alphanumeric symbol, represented by theRecord length
corresponding symbol which can be a “0”, a “.”, or a space “ ”, for example. When
each of the symbols is encoded in extended ASCII code, every column represents
one byte. Hence we speak of bytes rather than columns. So we can conclude that
when we want to describe the file we say: The file meteo82.dat is formatted and
has a record length of 64 bytes.

Records end with a line break – otherwise we would see only one long, long line.
Unfortunately, different operating systems use different conventions for line
separators. Windows uses two bytes, i. e., a CR (carriage return) and LF (line feed),
Mac OS only a CR, Linux only an LF. The line separator is usually not considered
in the value for the record length. Again and again these different conventions are
a source of trouble poor programmers have to live with. So again, be careful when
you work with files in programming environments!q qq q Record 12 starts with the bytes _1_18212__54 (for more clearness, we have
replaced the invisible space characters by an underscore _). Does it mean that
there is a number 18212 encoded in the file? Of course not. We humans conclude
immediately that the first two bytes _1 stand for day one of the data recording, the
next two bytes _1 stand for the month January, the next two bytes 82 are an
abbreviation for the year 1982, the next two bytes 12 stand for the hour, and so on.

Computers don’t conclude. They need to be told. This means that it is necessary toFortran format
provide a “key” to any routine which shall interpret data files. Such a key is usually
called a format. There are many conventions in computing that are used as formats. In
INSEL the Fortran format conventions are used in order to describe the “keys” to data
files.

3.1 Reading data

Reading data from files is a pre-requisite for many simulation runs, meteorological
boundary conditions are required in practically all renewable energy simulations, for
instance. Let us assume that some weather station has sent us a file with hourly ambient
temperature data for one year, the file being named temperature.dat.

Tutorial

3.1. Reading data 45

One INSEL block which can read data files sequentially is the READ block.

READ

?

[nb]

n, [h,]

fn, format
x1
?

. . . xn
?

This block requires a parameter n for the number of values that is to be read per record,
the file name fn, of course, and – very important – a parameter which describes the
format of the file. In addition, there is an optional parameter h which allows us to start
reading of the file not necessarily at the first record but at record number h+ 1, i. e., if
we set h > 0, the READ block skips reading the first h records. And there is an optional
input nb which can be connected to any output of a block to express the dependence of
the READ block from this block.

The file temperature.dat is quite simple, it contains only one value per record. Heretemperature.dat
are the first ten records:

4.5
3.8
3.4
3.1
3.0
2.9
3.2
2.8
2.3
2.7

In this case and in cases where all data in a record are numbers and separated by a blankStar format
character (space) the star format is very easy to apply to reading such data files. In order
to read the file temperature.dat it is easiest to use this star format like we did in
examples\blocks\inputOutput\read.vseit:

Tutorial

46 3. Reading and writing data files

We can identify all the above discussed parameters: The file name temperature.dat,
the Fortran format * (both are string parameters which are entered without enclosing
quotes), and the parameter n = 1 for the number of outputs and the skip parameter h,
set to the default value zero here.

Well, one year has 8760 hours (if it is not a leap year), so we use a DO block which
counts from 1 to 8760, and a PLOT block because we would like to see the time series.
Please observe again, that the Standard block READ must not necessarily be connected
to the Timer. If this disturbs you, you can add a data input terminal to the READ block
and connect the DO block output – it makes no difference in this case, but perhaps it
would make the model structure clearer.

When you run the application the graph with the temperature time series will show up.

You may wonder, how INSEL found the file temperature.dat although no pathCurrent directory
information is given in the file name. By default, INSEL searches for files in the directory
of the model file. Of course, it is possible to include the full path to the file in the READ

Tutorial

3.1. Reading data 47

object. Either slashes or backslashes can be used, like c:\myData\temperature.dat or
c:/myData/temperature.dat, for instance. The total length of the string is restricted to
1024 bytes – all string parameters in INSEL 8 are restricted to this length.

There are no problems to be expected when a file contains more than one value per
record like a standard file, provided by the Fraunhofer Institute for Solar Energy Systems
ISE in Freiburg. The file data\weather\iseyear.dat provides data in 15 minutes
resolution of some meteorological parameters for the location of Freiburg im Breisgau,
which is in the very south of Germany, close to the Swiss border. For this example we
use only the July fraction of the file saved under data\weather\iseyear7.dat. The
first records of this file are shown here:

iseyear7.dat
7 1 0 7 30 17.5 95 0 0 0
7 1 0 22 30 17.3 94 0 0 0
7 1 0 37 30 17.1 92 0 0 0
7 1 0 52 30 16.8 91 0 0 0
7 1 1 7 30 16.6 90 0 0 0
7 1 1 22 30 16.4 89 0 0 0
7 1 1 37 30 16.2 88 0 0 0
7 1 1 52 30 16.0 87 0 0 0
7 1 2 7 30 15.8 86 0 0 0
7 1 2 22 30 15.8 84 0 0 0
7 1 2 37 30 15.7 83 0 0 0
7 1 2 52 30 15.6 82 0 0 0
7 1 3 7 30 15.6 81 0 0 0
7 1 3 22 30 15.4 80 0 0 0
7 1 3 37 30 15.3 79 0 0 0
7 1 3 52 30 15.3 78 0 0 0
7 1 4 7 30 15.3 76 0 0 0
7 1 4 22 30 15.0 75 0 0 0
7 1 4 37 30 14.7 74 5 0 5
7 1 4 52 30 14.7 73 14 0 14
7 1 5 7 30 14.6 72 31 52 27
7 1 5 22 30 14.5 71 57 160 40
7 1 5 37 30 14.7 69 83 228 50
7 1 5 52 30 15.1 68 116 301 61
7 1 6 7 30 15.6 67 150 366 70
7 1 6 22 30 16.2 66 187 420 79
7 1 6 37 30 16.9 65 226 466 88
7 1 6 52 30 17.4 63 267 507 91
7 1 7 7 30 18.1 60 309 543 99
7 1 7 22 30 19.1 57 351 580 103
7 1 7 37 30 20.2 53 395 620 107
7 1 7 52 30 21.5 52 435 643 112
7 1 8 7 30 21.2 52 473 658 117
7 1 8 22 30 21.7 54 516 683 122
7 1 8 37 30 21.6 55 557 700 129
7 1 8 52 30 22.0 55 592 709 134
7 1 9 7 30 21.6 55 629 713 145
7 1 9 22 30 21.5 55 666 724 153
7 1 9 37 30 22.1 55 701 736 158

Tutorial

48 3. Reading and writing data files

7 1 9 52 30 23.0 55 727 740 162
7 1 10 7 30 23.3 52 758 751 166
7 1 10 22 30 23.1 53 786 755 174
7 1 10 37 30 23.0 52 811 758 180
7 1 10 52 30 24.0 51 834 764 184
7 1 11 7 30 24.5 49 851 762 191
7 1 11 22 30 25.0 47 869 764 197
7 1 11 37 30 25.0 45 882 763 202
7 1 11 52 30 25.6 45 887 751 213
7 1 12 7 30 25.7 45 894 748 217
7 1 12 22 30 25.7 43 857 699 223
7 1 12 37 30 26.0 41 906 768 209
7 1 12 52 30 26.4 40 902 757 217

All data in the records are consequently separated by blanks so that we can use the starInterpretation
format to read this file. The file records contain

1 Month
2 Day
3 Hour
4 Minute
5 Second
6 Ambient temperature / ◦C
7 Relative humidity / %
8 Global horizontal irradiance / Wm−2

9 Direct normal irradiance / Wm−2

10 Diffuse horizontal irradiance / Wm−2

The record length is 39 bytes. When you want to read the file, open a new VSEitExercise 3.1
network via File > New – or open the previously used file for the temperature.dat data
– and save it under a new name, like iseyear.vseit, for example. The READ block so
far has only one output, but we can add nine more via the block pane.

Now that your READ block has ten outputs you can give them understandable names,
like M for month, d for day etc, by a double click on the respective ports.

Finally, choose some channels of your interest and analyze the file by plotting some time
series portions from the file.

This graph shows the relative humidity, for example:

Tutorial

3.1.1 Fortran format conventions 49

Since many years monthly mean values of global radiation data are recorded by theDWD data
DWD (Deutscher Wetterdienst – German Weather Service). We provide them for INSEL
users in files named dwdyyyy.dat – yyyy is a place holder for the year 2011, for
example. These lines show a part of the first records of file dwd2011.dat:

dwd2011.dat
Aachen 20 34 97 139 180 155
Augsburg 30 45 105 161 191 151
Berlin 18 41 92 132 185 181
Bonn 20 37 98 141 181 157
Braunschweig 19 34 90 140 174 177
Bremen 18 33 84 139 164 155

The file is well formatted in the above discussed sense, but – as a novelty – it does not
only contain numerical data but also alphanumerical data, the name of the locations in
this case. For such files, the Fortran star format can no longer be used.

Let us make a short excursion to some general Fortran format conventions.

3.1.1 Fortran format conventions

From the many so-called edit descriptors that exist in Fortran like I, B, O, Z, F, E, EN, ES,Edit descriptors
D, G, A, and X – to mention a few – INSEL makes use only of F, E, and X.

On the one hand this is a big advantage, because it is not necessary to read through
pages and pages to understand all possible edit descriptors and their use. On the other
hand this is a restriction, of course. But, you will see that almost all practical cases can
be covered and in the (seldom) case that one of the other edit descriptors is required, the

Tutorial

50 3. Reading and writing data files

advanced INSEL programmer can write and include his own code in INSEL to handle
these cases.

Ergo, F, E, and X. What is their meaning? At first, F stands for floating point format and
is used for real editing without exponents, E stands for exponential format, and X is used
for positional editing.

Let us look at the definitions taken from the Microsoft Fortran documentation:

The F edit descriptor tells Fortran to treat a number as a simple decimal floating-pointSyntax: Fw.d
value. On output, the I/O list item associated with an F edit descriptor must be a single-
or double-precision real or complex number, otherwise a run-time error occurs. On
input, the number entered may have any real or complex form as its value is within the
range of the associated variable. The field is w characters wide, with a fractional part
which is d decimal digits wide.

An E edit descriptor means that there is an exponent in the syntax of the value. The I/OSyntax: Ew.d
list item associated with the E edit descriptor for an output item must be a single- or
double-precision real or complex number. A number input to a variable described with
an E edit escriptor can have any real or complex form, as long as its value is within the
range of the associated variable. The field is w characters wide. The input field for the E
edit descriptor is identical to that described by an F edit decriptor with the same w and d.

The nX edit descriptor advances the file position by n characters. If n is absent, the X editSyntax: nX
descriptor defaults to 1X.

So far the Microsoft text.

We are currently interested in the input cases, i. e., reading of files. Starting with Fw.d
we have learnt that we can read floating-point numbers with a width of w bytes
(including the decimal point by the way) and d bytes following the decimal point. Let’s
use the file meteo82.dat as an example. Recall the first four records of the file:

Here, in addition to the data a ruler is shown, which makes counting a bit easier.

We want the first eight bytes _1_182_1 (the underscore representing the invisible space
again) of the first record to be read in as 1 for the day, 1 for the month, 82 for the year
(1982), and 1 for the hour.

Floating-point numbers in INSEL are described by the F edit descriptor. Hence, in order
to read the first two bytes as 1 we need an Fw.d format where the number of bytes w is
equal to two and since we have no decimals after the non-existing decimal point d must
be equal to zero. So F2.0 must be used – four times to read day, month, year, and hour,
so that we can write F2.0,F2.0,F2.0,F2.0.

Tutorial

3.1.1 Fortran format conventions 51

The edit descriptor F is a so-called repeatable edit descriptor, which means that if – like
in our case – a specific format appears identically several times, a repeat factor can
preceed the edit descriptor. This means writing F2.0,F2.0,F2.0,F2.0 is equivalent to
writing 4F2.0.

The next column contains ___0. So . . ., five bytes, no decimal fraction, F5.0. The next
four values look alike, hence in total we have 5F5.0 – do you agree?

Then comes __4.5-40. – “What meaning of this?” as Peter Sellers said in the funny
movie Murder by Death. In this special case the convention used in file meteo82.dat is,
that whenever there is a -40 in the file it means “lack of data.” So we can guess that the
__4.5 is a datum and the concatenated ”-40. is a datum which indicates “lack of data.”
This leads to an F5.1 followed by an F4.0 here.

The next two data seem to be missing too, so we interpret the bytes __-40.0 as F7.1 and
-40.0 as F5.1. At the end of the record we see _265. followed by __4.4 and have now
understood that the edit descriptors are F5.0 and F5.1.

To sum it up, the sequence of edit descriptors for the formatted file meteo82.dat is
4F2.0,5F5.0,F5.1,F4.0,F7.1,F5.1,F5.0,F5.1, all separated by a comma.

As we have already seen meteo82.dat has a record length of 64 bytes. We canCross check
cross-check this value with the sequence of edit descriptors: 4 times 2 bytes gives 8, plus
5 times 5 bytes gives 33, plus 5 bytes, gives 38, plus . . . gives 64. Okay?

In Fortran, format strings have to be parenthesised, i. e., the final Fortran format stringParentheses
to read all data in a record of file meteo82.dat is

(4F2.0,5F5.0,F5.1,F4.0,F7.1,F5.1,F5.0,F5.1)

When numbers get too big, the representation like 123 000 000 000 is no longer practical.Big numbers
In Fortran we can use the exponential representation for such cases. The number then
would be shown as 0.1230E+12, which reads as 0.1230× 1012. In order to describe this
with the E edit descriptor we first have to count the number of bytes of 0.1230E+12,
which is equal to 10, including the decimal point, the E and the plus sign. The number of
decimals is 4 bytes following the decimal point, so that the format is E10.4.

The nX edit descriptor is used to ignore n bytes during the reading of a record. In case of
the above mentioned file dwd2011.dat we are not interested in a numerical evaluation
of the bytes which contain the name of a location.

In printed form it is difficult to exactly count the number of bytes used for the location
name due to the many spaces. In dwdyyyy.dat in total 20 bytes (including all spaces) are
used for the location names. This means, when we want to read dwdyyyy.dat files we
would like to always skip the first 20 bytes of each record. Hence, n is equal to twenty
and we write 20X.

In the files which contain data of complete years 12F6.0 values are saved for 12 monthly

Tutorial

52 3. Reading and writing data files

means of the global radiation, followed by one F7.0 value for the sum of the 12 months
radiation values and an F5.0 value which contains the percentaged deviation of the
annual value from the long-term mean value.

When we sum up the number of bytes in the edit descriptors we find
20 + 72 + 7 + 5 = 104 bytes.

This ends our short excursion to the Fortran format conventions which are important
for INSEL programmers.

You should now apply your newly gained knowledge for an analysis of the two example
data files meteo82.dat and dwd2010.dat. Before you can really start, some more
information about the file contents is necessary.

Let us start with the file meteo82.dat. It contains the following data:Contents of
meteo82.dat

1 Day
2 Month
3 Year
4 Hour (1-24)
5 Global irradiance horizontal / Wm−2

6 Diffuse irradiance horizontal / Wm−2

7 Global irradiance tilt angle 70 degrees, facing South / Wm−2

8 Global irradiance tilt angle 70 degrees, facing South-East / Wm−2

9 Global irradiance tilt angle 70 degrees, facing South-West / Wm−2

10 Ambient temperature / ◦C
11 Relative humidity / %
12 Air pressure / hPa
13 Precipitation / mm
14 Wind direction / degrees from north via east, south, etc.
15 Wind speed / m s−1

Since three of the data columns are completely lacking (all -40s) we can skip these
columns.

Can you construct the Fortran format when these bytes are skipped by nX?Exercise 3.2

Now you have all the necessary information and can plot and analyse the time seriesExample
meteo82.dat saved in meteo82.dat.

As usual, we provide example solutions. But you gain most from this Tutorial when you
try and solve the problems on your own before you compare your solutions with ours.

We have constructed a READ block entity which fits the needs of meteo82.dat and plotSolution
the time series of wind direction and wind speed in one diagram.

Tutorial

3.1.1 Fortran format conventions 53

Here comes the graph:

Rather than simply plotting the wind data it is much more interesting to analyse the
radiation data on the different orientations, but we leave this task for you.

As another exercise use the file dwd2002.dat to compare the radiation distribution overExample
dwd2002.dat Germany at the different locations available in dwd2002.dat. When you open the file –

which resides in the data\weather directory – with a text editor you find out that
dwd2002.dat contains data for 62 locations.

In the Fortran format conventions section we have seen that each record of the file
contains a location name (20 bytes) followed by 12 monthly radiation values (12F6.0, in
the unit kWh/m2), the annual sum (F7.0, also in the unit kWh/m2), and the deviation to
long-term measurements (F5.0, in percent).

Plot the annual radiation sums for all 62 locations.Exercise 3.3

Since we are only interested in the annual radiation sums, we can skip to read all otherSolution

Tutorial

54 3. Reading and writing data files

information in the file. Hence, we can simply use the format string (92X,F7.0,5X).

This is the output:

The locations in the file are ordered alphabetically, so the sequence in the plot does not
make much sense. But we can observe, that the level of global radiation on a horizontal
surface in Germany is in the range between 900 (the pitiable people in North-Germany)
and 1200 kWh/m2 in the South.

3.1.2 The READN block

When you look at the structure of the data in file dwd2002.dat and our only approach
to file reading – sequential access – so far, you may find yourself confronted with the
question “How can I use the READ block to access the monthly mean values saved in
the file one after the other, i. e., plot the time series of monthly radiation data for a
certain location?”

Tutorial

3.1.2 The READN block 55

Think about a solution for a few moments, please!Exercise 3.4

The problem is: One READ block execution reads one complete data record at a time. If
we want to access all twelve data for a location, we can use a READ block with a Fortran
format which reads all 12 values (20X,12F6.0,12X) with the consequence that we have
all twelve values on output of the READ block at the same time. When this is what you
want – no problem.

But if you want to plot the data for example, the PLOT block would require twelve
inputs (all connected to the outputs of the READ block) plus one for the x-coordinate.
What x-coordinate and what kind of a plot would this be?

So, what we really want is not to read a complete record in one step but only one datum
like the radiation for January, plot it, read the next datum like the radiation for February
and plot it and so on. It is obvious that the READ block as it is designed cannot solve this
problem.

In such cases the READN block is one way out.¹ The READN block – like the READ
block – reads one complete record as specified in the Fortran format parameter but
outputs only one value at a time – it triggers the output values. The READN block
expects a parameter which says how many calls of the block it has to wait until a next
physical read access is to be performed on the file. The layout of the block is shown in
the following graph:

READN

?

[nb]

?
xi

n, [h,]

fn, format

The layout of the block is exactly identical to the READ block but – no matter what the
format parameter is – it outputs only one value per call.

Let us use the block for a plot of monthly mean values of global radiation for the
location of Stuttgart on the basis of file dwd2002.dat. By opening the file with a text
editor we find out that Stuttgart is record number 55. So, the READN block should skip
the first 54 records. The Fortran format for reading is (20X,12F6.0,12X). The file name
is clear, so we can write the application.

Do it, now!Exercise 3.5

The solution isSolution
1 Another possibility to solve this problem could be to use the multiplexer block MPLEX – see Block Reference
Manual for details. But when the number of data per record gets large, the method is rather inconvenient
since all outputs have to be connected.

Tutorial

56 3. Reading and writing data files

and the time series plot is

3.1.3 The READD block

A third block, named READD for reading data files is available in INSEL which allows
direct access to data files. In contrast to sequential access, where we can start reading a
file at a given record and then the read operation returns the files records sequentially,
i. e., one after the other, in direct access mode we can read records in any arbitrary order.
In order to do that we have to deliver the record number of the record we want to
access. How will the operation system perform the reading when we, for example, want
to read the tenth record of a file?

Well, as we have heard at the very beginning of this Module a file is nothing but a
stream of bytes. Logically we have identified records as logical lines in the file. For direct
access the operating system takes the record length – let us assume a record length of 80
bytes – of the file, multiplies it with the number of records to skip – nine in our example

Tutorial

3.1.3 The READD block 57

– and then knows the displacement from the start of the file to the position where we
want to start reading. In our example reading the tenth record means that
80× 9 = 720 bytes must be skipped (plus the line separator bytes).

This method works only if all records have exactly the same length – otherwise the
calculation would lead to some arbitrary byte in the file and makes an interpretation of
the data stream impossible.

This is the design of the READD block:
r

?

READD
n, lrec,

fn, format
x1
?

. . . xn
?

The parameters should be self explaining by now.

As an example for direct access read and plot the time series of global and diffuseExercise 3.6
radiation on a horizontal surface for the month July as stored in file meteo82.dat.

Yes, it is not really necessary to use the READD block. We can also solve the problem bySolution 1
opening the file meteo82.dat, find the record number where the first of July starts
(record number 4345 since 1982 was not a leap year), quickly calculate 31 days times 24
hours gives 744 records, use a DO block which counts from one to 744, use the READ
block and set the skip parameter to 4344, plot the two curves and ready.

But how would you use the READD block? Continue reading when you know the
solution.

Use a CLOCK block and set the parameters from 01.07. any year 00:00:00 to 31.07. sameSolution 2
year 24:00:00 in steps of one hour. Remember that 1982 was not a leap year. The hour of
year block HOY can be used to convert the Gregorian calendar date into the hour of the
year – this value is exactly the record number that we need, connect it to the READD
block’s input, and plot the curves. Now it is very easy to quickly change the parameters
so that you can access the December data, for instance.

Tutorial

58 3. Reading and writing data files

This is the plot of the radiation data:

3.1.4 File name qualifiers

File names in INSEL can be varied during a simulation run, when file name qualifiers
(FNQs) are used in file name parameter strings. If the first character of a file name
(without path) is a # character the file name is considered variable and is parsed by
INSEL. Up to four qualifiers can be used as place holders for digits. The qualifiers have
the format %nX, where n is a positive digit in the range of 0 to 9 and X is a character out
of YMDh – reminding on their most frequent use of date and time information in data file
names.

The numerical values for the n digits must be provided as block inputs. Y is used with
the first input, M with the second, and so forth.

The file name #myName%4Y.dat results in myName2011.dat, assuming that the first inputExample
of the block containing the file name has a value of 2011.

Tutorial

3.1.4 File name qualifiers 59

Adding a second input which contains values for the months of a simulation, a qualified
file name would be #myName%4Yplus%2M.dat. For a simulation running over a complete
year the generated file names would be myName2011plus01.dat,
myName2011plus02.dat, . . . myName2011plus11.dat, myName2011plus12.dat.

The months from January to September are interpreted with leading zeros when theSuppress leading
zeros qualifier #myName%4Yplus%2M.dat is used. Leading zeros are suppressed when the

qualifier #myName%4Yplus%0M.dat is used.

When a file name contains path information, the # sign is interpreted as qualifier only
when it is the first character of the file name – not the path name. For example, running
a CLOCK block over two years in steps of one month and connecting the first three
outputs of the CLOCK block as inputs to an IO-block with the qualified file name
C:\Path\#prefix_%4Y_%0M_%2d_appendix.dat results in something similar to

C:\Path\prefix_2000_1_01_appendix.dat
C:\Path\prefix_2000_2_01_appendix.dat
...
C:\Path\prefix_2000_9_01_appendix.dat
C:\Path\prefix_2000_10_01_appendix.dat
C:\Path\prefix_2000_11_01_appendix.dat
C:\Path\prefix_2000_12_01_appendix.dat
C:\Path\prefix_2001_1_01_appendix.dat
...
C:\Path\prefix_2001_12_01_appendix.dat

The file name parameter #C:\Path\prefix_%4Y_%0M_%2d_appendix.dat would not
achieve the desired result but defines a constant file name
#C:\Path\prefix_%4Y_%0M_%2d_appendix.dat.

Assume, we want to read the data files meteo82.dat and meteo83.dat in a singlereadd_8283.vseit
simulation run. A file name qualifier which could be used for this purpose is
#meteo%2Y.dat. As input to a READ or a READD block the two values 82 and 83 are
required successively. One way to solve this problem is shown in the following model:

The CLOCK block varies date and time from 01.01.1982 00:00 to 31.12.1983 24:00 in steps
of one hour. A CONST block with parameter 82 is used. As long as the CLOCK block
runs through the year 1982 the logical result of the EQ block is false, i. e., 0. When the
CLOCK block switches to the year 1983 the EQ block outputs the value 1. This value
added to the CONST 82 gives the desired value 83.

Tutorial

60 3. Reading and writing data files

Another solution could use a DO block with its output connected to the CLOCK block
and the READ or READD block. The parameters of the DO block could be 82, 83, and 1.
In this case the CLOCK block should run through any non-leap year, 2011, for instance.

We have used a AVEP block to calculate the daily means of the global and diffuse
radiation data. Please observe, how we have used the EQ block to create an x-axis signal
for two times 365 days. This is our result:

Another interesting application made possible though FNQs is the following: INSELreadn_DWD.vseit
provides ground-measured DWD (German Weather Service) data for 62 German
locations since the year 2000 in the data\weather directory. The files are organised as
annual data files, named dwd2000.dat, dwd2001.dat, and so forth.

We have already used a READN block to read the Stuttgart data for one year earlier in
this Module.

Plot the monthly mean global radiation data for Stuttgart over the period from 2000 toExercise 3.7
2010 with a single INSEL model.

Using file name qualifiers makes this task easy as pie:Solution

readn_fnqs.vseit

We need two DO blocks, one for the variation of the year from 2000 to 2010 in steps of 1
and one for the variation of the month from 1 to 12 in steps of 1. The READN block

Tutorial

3.2. Writing data to files 61

expects FNQs starting with input number 2. The qualified file name is #dwd%4Y.dat
(plus path information) and, as usual, the PLOT block shows the result.

We are going to have one more example for the use of file name qualifiers at the end of
the next section on writing data to files.

3.2 Writing data to files

With the WRITE block data can be written from an INSEL application to the computers
hard disk, a USB flash memory disk, or any other media where you have write access.

There are basically two modes: You canq qq q Create a new file or overwrite an existing fileq qq q Append data to a new or an already existing file

x1

?

. . . xn

?

WRITE
mode,
fn, format

If the Overwrite mode is chosen, then after opening the file specified in the file name
parameter the write pointer points to the beginning of the file and overwrites its content.

Be extremely careful with the option to overwrite files. When you choose this option,WARNING

Tutorial

62 3. Reading and writing data files

the block will definitively overwrite the file and the old file – if there was one – is
definitively lost forever. There is no Undo. When it was a file which contained
something very valuable before, now it is gone. So be careful. We deny any
responsibility. So again, be careful!

If the Append option is chosen, the pointer is positioned at the end of the existing file
before the first write operation.

If the Generate error message option is selected, the WRITE block will generate an error
message if the file already exists and INSEL does not execute the simulation model.

As file name you can choose any name which is valid under the operating system
version you are using. Of course, the file name can include path information. For
example c:\anyPath\myFile.dat is a valid file name (assuming that the path
c:\anyPath exists). If no path information is included in the file name INSEL writes the
file into the current directory (usually the INSEL working directory insel.work).

A simple application of the WRITE block is reformating of data files. random.vseitrandom.vseit
generates 100 Gauss distributed random numbers and writes the data to a file called
random.dat.

The first ten records of the file look like this:random.dat

1.0000000 1.6216065
2.0000000 -0.39489648
3.0000000 -0.33821103
4.0000000 0.53852010
5.0000000 -0.42136794
6.0000000 -0.23904423
7.0000000 1.2835248
8.0000000 0.38314018
9.0000000 -1.4969951
10.000000 -1.0831203

Please remember, that files like random.dat cannot be used for direct access with theExercise 3.8
READD block. Hence, write a small INSEL program which reformats the file to a file
with format (F12.7,1X,F5.1).

Tutorial

3.2.1 Monitoring and simulation 63

Yes, you are right, we could have used a format string like (F5.1,1X,F12.7) in theSolution
random.vseit example already. But then you would have missed this one.

Three obvious blocks, DO, READ, WRITE and done. Please observe again, that the READ
block does not need a connection to the DO block – because it is a Standard block and
Standard blocks are always successors of the main Timer when no input is connected . . .

. . . and everything is well formatted now:

1.0 1.6216065
2.0 -0.3948965
3.0 -0.3382110
4.0 0.5385201
5.0 -0.4213679
6.0 -0.2390442
7.0 1.2835248
8.0 0.3831402
9.0 -1.4969951
10.0 -1.0831203

3.2.1 Monitoring and simulation

INSEL can be used to monitor real-life systems, the most prominent ones being
grid-connected PV generators like the Trade Fair Munich Generator, for example. Have
a look at the following block diagram:

A CYCLE block is used to continuously run this INSEL model. The execution speed of
the model – measured in real-time seconds – can be specified by the parameter of the
CYCLE block. For every time step the NOW block returns the current date and time.
Year, month, and day are used as file name qualifiers to write files with daily data of
some monitored and/or simulated data – in this case only dummy random numbers.

Blocks from the palette’s GUI objects category can be used to display any data over the
course of the simulation run. Perspectives can be used to create complete GUIs

Tutorial

64 3. Reading and writing data files

(graphical user interfaces) for the application. We will return to this topic in more detail
in Module .

3.3 Plotting data

Another INSEL block of the data writing category – which you have used several times
already – is the PLOT block. From the application point of view, x-y coordinates are
connected to the block and the block generates a graphical output. Let us understand
more deeply how the block operates.

At first, recall that every INSEL block works absolutely local. By this we mean that the
block can perform only such operations, which depend on nothing but the actual values
of the inputs, the parameters, and – in some block’s cases – on the history.

Let us use the simple case of plotting the sine function as an example.

From the point of view of the PLOT block, on the first call the block receives an x-input
zero and a y-input equal to zero, too. We know, that on the first call the first zero is an
angle α = 0◦, and the second input is the sin(α) – the PLOT block doesn’t know
anything about this.

The only point of interest from the PLOT block’s point of view is that there is a data
point (0,0) which I (the PLOT block) have to show as one of probably many data points
in a graphical plot. What does the block do? It saves the data point in a data file and
expects further actions – either it receives more data points, in which case the block will
append them to the data file, or the instruction to display the complete graph.

An online plotter would show data points and their linear (or other) interpolation
immediately. But the PLOT block is not an online plotter.

The data file always has the same name insel.gpl and is saved in theinsel.gpl
hidden-application-data directory. The instruction to display the graph comes from the
inselEngine after the simulation run has been completed. The first ten records of file
insel.gpl in this example are

0.0000000E+00 0.0000000E+00
0.1000000E+01 0.1745241E-01
0.2000000E+01 0.3489950E-01
0.3000000E+01 0.5233596E-01
0.4000000E+01 0.6975647E-01
0.5000000E+01 0.8715574E-01
0.6000000E+01 0.1045285E+00
0.7000000E+01 0.1218693E+00
0.8000000E+01 0.1391731E+00

Tutorial

3.3. Plotting data 65

0.9000000E+01 0.1564345E+00

INSEL uses the maximum number of significant digits for Fortran four-byte REAL
numbers (which is seven).

If you want to make further use of the file – maybe you like to post-process it with a
presentation software of your choice – you can copy or rename the file to your needs.
The only thing you need to document is what the meaning of the records, i. e., the
x-coordinate and the y-coordinate(s) is.

The PLOT block, by default, generates a second data file insel.gnu, which contains
some basic commands which enables Gnuplot to display the graph. In the case of our
sine application the file looks like this.

set autoscale xy
set style data lines
set nolabel
plot ”C:/Users/name/AppData/Roaming/doppelintegral/INSEL/tmp/insel.gpl” using 1:2 title ””
pause mouse

The first command set autoscale xy leaves it up the Gnuplot to find reasonable
settings for range and increment of the x- and the y-axis. The next command
set data style lines requests from Gnuplot to draw a connection line, i. e., a linear
interpolation between the data points. set nolabel leaves the plot clean of any label
names, and plot ”/path/insel.gpl” using 1:2 title ”” lets Gnuplot show the
data plot based on the data in file /path/insel.gpl using the values in the first column
as x-coordinate and the second as y-coordinate.

The value of /path/ depends on the user’s name and settings and is located on the lokal
hard disk, by default. title ”” suppresses any default legend of the plot, and finally
pause mouse makes Gnuplot wait for a mouse click to close the window.

Such a default Gnuplot command file is always generated by the PLOT block when
insel.gnu is given as PLOT block parameter. You can specify own Gnuplot command
files for the PLOT block but this requires some knowledge about Gnuplot programming.

One last hint to the PLOT block: You can start Gnuplot from the Tools menu or by aInteractive Gnuplot
click on the icon in the tool bar. The Gnuplot window appears.

Tutorial

66 3. Reading and writing data files

In the work area you see a prompt gnuplot> and a blinking cursor. Here you can enter
Gnuplot commands. If, for example, you want to plot the last INSEL plot you made – this
is file insel.gpl in the hidden application data directory – you can proceed as follows:

Type pwd at the gnuplot prompt (pwd is short for print working directory) and Gnuplot
shows the actual directory name. You can use the change directory command
cd ’dirName, where dirName stands for the target directory. Please notice the single
quote in front of the directory name.

You can either specify a complete path – like c:\myDirectory, for example – or you can
use relative directory names just like in a DOS box. Remember that for changing to a
directory one level higher than the current directory the command is ch .. under DOS
and ch ’.. under Gnuplot.

When the hidden application directory is the current directory you can use the
command load ’insel.gnu (observe the quote again) and Gnuplot will display the last
graph – just like INSEL when it performs these default steps for you automatically.

The difference is now, that after closing the graph window you can interactively use the
menus and buttons of Gnuplot to make modifications to the plot. For example, if you
want to add a label to the x-axis use the Axis –X Label menu item and enter the text for
the label, skip the offset by simply clicking OK and then click the Replot button in
Gnuplot’s tool bar.

Many things should be self-explaining in the Gnuplot window. When you are interested
in a deeper understanding of Gnuplot, the complete Gnuplot manual is available under
the Help menu of Gnuplot. It is definitively worth to have a look, because Gnuplot is
really powerful.

Summary q qq q Data files are streams of bytes which must be interpreted by encodings, like
ASCII, for example.

Tutorial

3.3. Plotting data 67

q qq q INSEL uses Fortran format conventions. You should know now how to work with
the edit descriptors F, E, and X.q qq q Sequential access to data files is possible with the READ block. Optionally, we can
start reading of formatted or unformatted (star format) files either from the first
record or start reading the file at a well-defined offset.q qq q Direct and trigger access to read files is possible with the blocks READD and
READN.q qq q The WRITE block can be used to write data to arbitrary data files.q qq q The PLOT block turned out as a block which writes two data files, i. e., insel.gpl
and insel.gnu.

Tutorial

4 :: If blocks

A programming language is not a programming language if it does not provide at least
one statement which enables the use of an if-then-else structure. In INSEL this structure
element is represented by the concept of If blocks, or I-blocks, in short.

In Module we have already used an ATEND block as a first example for an I-block. Let
us briefly recall its use. The block diagram which used the ATEND block was the
following:

atendExample.vseit verschoenern

A DO block is used as timer which runs through one hour in steps of one second. For
constant meteorological and operational conditions a PVI block calculates the warming
up of a PV module from an initial temperature of 25 ◦C. The resulting temperature plot
has been shown on page 25.

We saw from the graph that the module heats up to about 53 ◦C. What if we are only
interested in the equilibrium temperature rather than the complete temperature profile?
In this case we would like to let the module warm up, but display only the last, i. e., the
equilibrium temperature value. This is a typical task for the ATEND block.

In the example, it uses the module temperature as input, whilst the output of the ATEND
block – which is identical in value to its input – is connected to a SCREEN block. But the
ATEND block ignores all input values until the simulation run is completed. Only then,
the ATEND block lets the input signal pass.

Hence, from the point of view of the SCREEN block the SCREEN block is supplied by a
value from the ATEND block only at the end of the simulation run, and thus displays
only one value: the value at the end of the simulation run, which is the equilibrium
temperature of the PV module in this case.

4.1 At end If blocks

Let us analyse the ATEND block in more detail.

4.1. At end If blocks 69

x

?

ATEND

?
x

The block – like any other INSEL block – receives data depending on its input
connection. But the ATEND block ignores all inputs until the end-of-run, i. e., until the
condition whether the end of run is reached becomes true. Only in this case, the ATEND
block lets the input signal pass through to its output and the inselEngine calls the blocks
which are connected directly or indirectly to the ATEND block’s output.

This is the typical behavior of an If block – it checks a specific condition. When the
condition is true the blocks which make direct or indirect use of the I-block’s output are
executed, when the condition is not true the blocks which make direct or indirect use of
the I-block’s output are not executed.

In case of the ATEND block the condition is the end of a simulation run. Other examplesEnd of run
for blocks which use the end of simulation run condition are the blocks which calculate
the average of an input signal over a complete run (block AVE), or cumulate an input
signal over a complete run (block CUM), or find the absolute maximum (block MAXX)
or minimum (block MINN) of a time series.

We start with the average block AVE. In Module we had used the file meteo82.datAVE block
which contains hourly records of meteorological parameters for the location of
Oldenburg in Germany for one year. One variable of the time series saved in this file is
the global irradiance on a horizontal surface in W/m2. How can we calculate its annual
mean value?

The answer is straight forward: Use an average block, to be found under the
Mathematics Logics category, connect it to the radiation output of a READ block which
reads meteo82.dat and display the output of the AVE block with a SCREEN block. The
block diagram is simple.

And the result is: The global irradiance on a horizontal surface in Oldenburg in the year
1982 has been 108.98 W/m2 – did you find the same figure?

Please observe three details from our block diagram.q qq q We have added a PLOT block which displays a graph of the complete time series.

Tutorial

70 4. If blocks

The resulting plot is useful for a plausibility check that we have really configured
our READ block with the correct global irradiance data.

q qq q Since we are interested in the global irradiance data on a horizontal surface only,
we skip all other data of the input file by using the format (8X,F5.0,51X). Hence,
our READ block has only one output.q qq q Again, the READ block is not connected to the T-block DO, but executed in each
of the 8760 time steps (since READ is a Standard block).

The unit of the hourly irradiance data – and hence of the annual average as well – is
given in W/m2. Physically spoken this is a power density, i. e., power in watt per area in
square meter. There are some people in this world who seem to have slight problems
with this kind of average calculation for solar irradiance, with somehow vague
arguments like “But at night the Sun does not shine, so why shall I consider these hours
in the calculation at all?” The answer is: The AVE block just calculates the global
average Ḡ of the radiation time series G(h), h = 1, . . . 8760 according to the standard
definition of the average

Ḡ =
1

8760

8760∑
h=1

G(h)

For those who prefer to think of global radiation as energy per square meter and timeConversion of
units interval, it is easy to convert the annual mean value from W/m2 to kWhm−2 a−1. All we

have to do is multiply Ḡ by the number of hours per year (which is 8760), and divide by
one thousand for the conversion from Wh to kWh, i. e., multiply Ḡ, given in W/m2 by

Tutorial

4.1. At end If blocks 71

8.76 to get Ḡ in kWhm−2 a−1. The result is easily calculated:
108.98× 8.76 = 954.66 kWh per square meter and year.

If you like to use INSEL for the calculation, connect a GAIN block with parameter 8.76 to
the AVE block’s output and display the output of the GAIN block rather than the output
of the AVE block directly. This is a simple example for the conversion of units with
INSEL. Please notice that instead of using a GAIN block, it would have also been possible
to use a CONST block with parameter 8.76 and a MUL block which multiplies the AVE
block’s output with the CONST block’s output. The result is exactly the same but using
the GAIN block saves one INSEL block in the block diagram and is therefore preferred.

There are three more If blocks available which are very similar to the function of the
AVE block:

The CUM block calculates the cumulated sum of its input over a complete simulationCUM block
run.

x1

?

. . . xn

?

CUM

? ?
s1 . . . sn

The MAXX block calculates the overall maximum of its input over a completeMAXX block
simulation run.

x1

?

. . . xn

?

MAXX

? ?
x1,max . . . xn,max

The MINN block calculates the overall minimum of its input over a complete simulationMINN block
run.

x1

?

. . . xn

?

MINN

? ?
x1,min . . . xn,min

Tutorial

72 4. If blocks

Use the three blocks and apply them in order to calculateExercise 4.1 q qq q The cumulated value for the global irradiance on a horizontal surface in kWh/m2

q qq q The overall maximum value for the hourly global irradiance on a horizontal
surface in W/m2

q qq q The overall maximum value for the ambient temperature in ◦Cq qq q The overall minimum value for the ambient temperature in ◦C

as saved in file meteo82.dat.

Solution 2

The maximum value of the hourly global irradiance on a horizontal surface is 843 W/m2.q qq q
We turn our attention now to another set of If blocks which also use the condition endFit blocks
of simulation run and this is the set of fit blocks. What is a fit? A fit is a statistical
method to approximate a set of data by an analytical equation of a given form. A very
wide-spread and well-known fit uses the method called linear regression. In this case, the
given (statistical) data set is approximated by a linear function. Before we discuss the
FITLIN block let us create a data base for the function to be fitted.

Let a DO block deliver 100 steps and a RAN1 block generate one uniformly distributedfitlin0.dat
random number for each step. When we multiply the random numbers by a factor ten
with a GAIN block, for instance, and add the DO block’s output and the output of the
GAIN block, we defined a scattered variable which can serve as data base for the FITLIN
block. We have saved the data in a file named fitlin0.dat in the examples\tutorial
directory. It has been calculated with this block diagram, saved as fitlin0.vseit in the
examples\tutorial directory as well:

The resulting data look at least a bit scattered and show an obvious trend.

Tutorial

4.1. At end If blocks 73

If you like, you can plot the data without the disturbing interpolation lines with Gnuplot.

Use Gnuplot in interactive mode, as briefly described in Module , page 65. Choose DataHint
Style Points from Gnuplot’s Styles menu, and click the Replot button.

The result is this:

Now we are ready to read the “statistical” data and perform a linear regression. TheFITLIN block
FITLIN block itself has the following layout:

Tutorial

74 4. If blocks

x

?

y(x)

?

FITLIN

?
a

?
b

?
r2

Two inputs must be connected and fed with data: An independent variable x, and an
x-dependent variable y(x). The block requires no parameters. Outputs are the variables
a, b, and r2, where a and b are the best approximations to the equation

y(x) = a+ bx

and r2 is the regression parameter which describes the accuracy by which the equation
y = a+ bx approximates the data. r2 = 0 is the case of absolutely no correlation, r2 = 1
stands for the case where all data points are either absolutely correlated or absolutely
anti-correlated.

The block diagram is simple again.

A READ block reads the scattered data from our file fitlin0.dat, just using the star
format, for example. The FITLIN block finds the parameters a, b, and r2. The SCREEN
block displays the output with format (3F8.4). We get this result:

4.8319 1.0039 0.9903

Once the result is known (a = 4.8319 and b = 1.0039) we can plot the linear equation
y = a+ bx and the scattered data in one diagram to see how good the fit is.

The block diagram which reads the scattered data requires only minor changes. A GAIN
block is used to multiply the output of the DO block (the variable x) by the factor
b = 1.0039, an OFFSET block with parameter a = 4.8319 and a SUM block builds the
sum y = a+ bx, which is displayed by the PLOT block.

This is the plot:

Tutorial

4.2. If blocks with a parameter 75

Some standard fit routines are available as blocks like block FITEXP, which fits data toStandard fit
routines the exponential function y = a exp(bx), block FITLN, which fits the logarithmic

function y = a+ b ln(x), and block FITPOW, which fits the power function y = axb.

There are some much more sophisticated fit blocks available in INSEL. For example, the
PVFIT1 and PVFIT2 blocks are used to fit data which describe the performance of
photovoltaic modules to equations known as the one-diode model and the two-diode
model. For further details on these blocks please refer to the respective reference
manuals.

An example for the PVFIT2 block will be presented in Module , page ??.

4.2 If blocks with a parameter

During the discussion of the average block AVE we have seen a plot of the hourly timeAVEP block
series of global radiation for Oldenburg, Germany. There was hardly something to
distinguish, since the plot was basically a lot of red ink.

Annual radiation time series are much better visualized as series of daily data rather
than hour by hour. An alternative would be a carpet plot – see block PLOTPMC for
further details.

In order to calculate the daily means an average block would be useful which cumulates
the radiation data over one day, i. e., 24 hours, divides the cumulated sum by 24, and
outputs the result after every 24 hours. This is exactly what the AVEP block does – it

Tutorial

76 4. If blocks

calculates an average over a number of steps as specified by a parameter p.

x̄ =
1

p

p∑
i=1

xi

which is exactly the same definition as the formula used by the AVE block, the only
difference being that p is a free block parameter.

x1

?

. . . xn

?

AVEP
p

? ?
x̄1 . . . x̄n

There are some very similar INSEL blocks named CUMP, MINNP, and MAXXP. You can
probably guess what their functions are – check the Block Reference manual for details.

Let us construct a simple application for the AVEP block, and plot the time series of
daily global irradiance data on a horizontal calculated from file meteo82.dat.

From a previous example we have simply replaced the AVE block with an AVEP block,
used an ATT block for the division of the hours by 24 and plot the time series of daily
data.

Tutorial

4.2. If blocks with a parameter 77

Please notice again, that the daily averages value are given in W/m2. Since the time step
of the data is one hour we can interpret the radiation data as Wh/m2 as well. If you
prefer to display the radiation data in kWhm−2 d−1 you should multiply the values by
0.024. Since the maximum daily value is about 333 W/m2 this corresponds nearly
8 kWhm−2 d−1 in summer.

Do not connect the outputs of the four different If blocks to one SCREEN block – INSELHint
will not accept this (try it) and display an error message that the SCREEN block depends
on not enclosed If/Timer-blocks.

This behavior has been newly introduced since version 6.0. Whether it is a feature or aBug or feature?
bug is still not clear – most probably it must be considered as a bug.

The background is that different I-blocks can have different conditions. Hence,
depending on the conditions some unwanted effects might occur if outputs of I-blocks
with different conditions are brought together. But in cases like the one we are
discussing, when the conditions are all the same – end of the simulation run – it should
work. But it doesn’t. The way out is to use four SCREEN blocks for the four outputs.

In case you wish to use an averaging block and a cumulation block and write the resultsWorkaround
to a data file, the above mentioned behavior does not allow this. However, a workaround
to use the cumulation block and “simulate” the average block by SUMP block which
cumulates constant 1 values with the appropriate parameter p and divide the cumulated
signal by the output of the SUMP block:

Tutorial

78 4. If blocks

Letting the DO block count from 1 to 10 and setting the parameters of CUMP and SUMP
to 10 leads to the expected result:

55.000000 5.5000000

4.3 Conditional If blocks

What, if we want to calculate monthly means rather than daily? The complication is,
that days always have 24 hours, but the number of days in a month is not constant. For
example, January has 31 days, February 28, or – if it is a leap-year – in February the
number of days is 29, March has 31 days and so forth.

A block which solves this problem conveniently is the AVEC block (average withAVEC block
condition). The layout of the block as follows.

c

?

x1

?

. . . xn

?

AVEC

?
cn−1

?
x̄1 . . .

?
x̄n

The block has two inputs: a condition input c and a signal input xi. The idea of the block
is to collect input data xi as long as the condition input c remains constant. When the
value of c changes, the block calculates the average over all xi where c has been
constant and outputs the average value. Let us look at an example first and then
understand some more details about the block.

Assume, that we want to calculate the monthly mean ambient temperature values fromMonthly means
the hourly data as stored in file meteo82.dat. Since the calculation of the average
depends on the Gregorian calendar it is obvious that we use a CLOCK block as timer
which runs through the hours of the year 1982.

For every time step of the CLOCK block INSEL reads one record from the file. The
inputs to the AVEC block then are (i) the condition input monthM as given by the
CLOCK block, and (ii) the data input Ta from the READ block. The following block
diagram does the job.

This is the result:

Tutorial

4.3. Conditional If blocks 79

1.0000000 -0.59731185
2.0000000 1.3403274
3.0000000 4.9831991
4.0000000 7.1958332
5.0000000 11.912768
6.0000000 16.160418
7.0000000 18.441263
8.0000000 17.304436
9.0000000 15.336250
10.000000 10.365457
11.000000 6.6379166
12.000000 2.4293010

When you remember the file format of meteo82.dat as discussed in detail in Module 4,
page 52 the ambient temperature is the tenth parameter of the file, so that we used the
format (33X,F5.1,26X) and a READ block with one output to read the temperature
time series.

Please observe that the SCREEN block uses the condition output of the AVEC blockA detail
rather than the month output of the CLOCK block to display the monthly mean
temperatures.

Why? Try, and figure out the reason by yourself for a moment.

Well, what happens? The CLOCK block starts with the first of January, zero hours, the
READ block reads the corresponding data record, the AVEC block receives the data, and
this sequence continues, continues . . . All the time the condition input of the AVEC
block is equal to one, i. e., the AVEC block remains in data collection mode.

Then comes the last hour of January. The output of the CLOCK block is year 1982,
month 1, day 31, hour 23 (not 24!). From the point of view of the AVEC block nothing
special happens – the condition input is still equal to one, i. e., the block remains in data
collection mode.

But then: in the next time step the CLOCK block changes its outputs to year 1982,
month 2, day 1, hour 0 (not 1!). Now, from the point of view of the AVEC block, the
condition input (month) has changed, i. e., the block has to perform some action.

The AVEC block calculates the average value, prepares the calculation of the average for
the next condition (which is February, logically), outputs the monthly mean value for
condition c = 1 (i. e., January) and request from the inselEngine to execute the
successors – which is the SCREEN block only, in this case.

How shall the SCREEN block know that the value it gets is the January value? The
output of the CLOCK in the actual time step says 2, i. e., February already. This is the
reason why the AVEC block outputs the average value and the corresponding condition
coordinate.

Did you recognize that it is in fact a problem to display the last mean value?A second thought

Tutorial

80 4. If blocks

The last time when the AVEC block is year 1982, month 12, day 31, hour 23. In this step,
no change in the condition happens, and hence the AVEC block cannot know that the
simulation run is finished.

For such cases INSEL has a mechanism that all blocks receive at least one additionalDestructor call
so-called destructor call. From the AVEC block’s point of view this implies a definitive
condition change. This is the last chance for the AVEC block to calculate the last average
value and put it on its output.

The same mechanism applies to the PLOT block. Maybe now you can have a better
understanding of the details about the PLOT block discussed in Module , page 64.

There are some more I-blocks which use a condition input, like CUMC, MINNC,More conditional If
blocks MAXXC. Please check the Block Reference manual for further details on these blocks.

Another block which is closely related to the mentioned ones is a block named AVEMAVEM block
which calculates a moving average of a given time series. The name might indicate that
the AVEM block is another example for an If block, but actually the moving-average
block is a Standard block.

x

?

AVEM

?

n

x̄

The AVEM block calculates its output from a connected time series by the formula

x̄j =
1

min{n, j}

j∑
i=max{1,j−n+1}

xi

which means that for any time step the AVEM block provides an average value over the
previous time steps as defined by the block’s parameter – let us neglect the initialization
problem for the time being. This means, that the AVEM block outputs a value for each
time step. But this is the behavior of a Standard block which always outputs a value,
whenever it is called.

What makes the difference to If blocks is, that If blocks provide output values only under
certain conditions and request from the inselEngine to execute the successors only now
and then, depending on their condition.

As an example for the AVEM block we calculate the moving average of the wind speed
data for January as saved in file meteo82.dat. As interval for the calculation of the
moving average we use 24 hours. Remember that the wind speed is the last value in the
records with format F5.1.

Tutorial

4.4. General if conditions 81

This is the block diagram

and this is the resulting plot:

Please observe that the AVEM block smoothens the high fluctuations in the hourly wind
speed data – as expected.

Allow us a last short remark on the AVEM block. Maybe you have the idea to look at theSide remark about
wind directions moving average of the wind direction time series. There is a little problem in doing so.

Did you notice, that when you average wind directions from North that it may happen
that the average of something like North-North-East and North-North-West must be
calculated?

North-North-East direction corresponds to around 350 degrees and North-North-West
to around 10 degrees. The average is 180 degrees, hence South direction, which is
obvious nonsense. But we do not further look at this aspect here – one reason being that
the AVEM block is not even an If block but a Standard block.

4.4 General if conditions

We turn our attention now to the more general cases of if conditions. The most natural“The” If block
candidate for a block of the group of If blocks is a block which gave the group of I-blocks
its name: The block named IF.

Tutorial

82 4. If blocks

x

?

0/1

?

IF

?
x

This block has two inputs, x and a logical input which can be either zero (false) or one
(true), and one output – the signal that is connected to the x input. The IF block lets the
input signal pass through, if the second input – the condition input – is true, otherwise
it doesn’t. “Otherwise it doesn’t” means, the output is not available in the current step,
and hence, the successors of the block, i. e., all blocks which make direct or indirect use
of the IF block’s output get no signal and are therefore not executed.

The best way to illustrate this behavior is a simple example. Let us construct a filter
which lets all numbers pass except the number three.

The DO block counts from one to five, i. e., its parameters are set to 1 for the initial
value, 5 for the final value, and 1 for the increment. The CONST block uses a value 3 as
parameter. The block with the symbol ̸= is the NE block (not equal) and checks whether
its two inputs are not equal (true) or equal (false). The NE block is a Standard block and
can be found in the Mathematics Logics category.

Both, the output of the DO block and the output of the NE condition block are
connected to the IF block. Finally, the IF block lets all values pass through, execept the
value 3. So, from the point of view of the SCREEN block, which is connected to the IF
block, the SCREEN block is served with data except when the output value of the DO
block is equal to 3.

What do you expect to see as output? The values 1, 2, 4, and 5. Test it, please.Test it!

Like in any ordinary programming language the problem to set up an if structure is toLogical conditions
formulate a condition which evaluates either to true (1) or false (0), and execute the if
branch when the condition is true or to perform no operation if the condition is false.

INSEL provides blocks for the formulation of all standard logical conditions. These
standard conditions areq qq q Equal (block EQ)q qq q Not equal (block NE)q qq q Greater than (block GT)

Tutorial

4.4.1 Load profiles 83

q qq q Greater or equal (block GE)q qq q Less than (block LT)q qq q Less or equal (block LE)q qq q And (block AND)q qq q Inclusive or (block OR)q qq q Exclusive or (block XOR)

All of them are Standard blocks and with these blocks a lot of logical conditions can be
constructed. The functions of the different blocks should be self explaining.

But let us look at the example of the GE block which checks for a greater-or-equalGE block
condition.

x1

?

x2

?

GE
[p]

?
0/1

As expected the GE block has two inputs x1 and x2 and checks whether x1 is greater of
equal x2. If yes, the block outputs a one, otherwise it outputs a zero. We have added an
optional parameter p which weakens the hard equal condition.

What is the reason? With INSEL we are doing numerics mainly on the basis of FortranAbsolute equity?
REAL variables. These variables in the computer’s memory have a rather limited
accuracy of about seven to eight significant digits. Hence, comparing them to being
absolutely equal might lead to unwanted results. Therefore, with the GE block the
variables must not necessarily be absolutely equal but can differ by a tolerance p and are
still considered equal by the GE block. When p is not specified, the GE block goes the
hard way and compares for absolute equaltiy.

If some of the other condition blocks should be unclear, please refer to the Block
Reference manual for the details.

4.4.1 Load profiles

In the next step let us practice to formulate if conditions for a realistic example. One of
the most natural applications of the condition blocks like EQ, GE, GT, etc. is the
formulation of load profiles in the widest sense.

Tutorial

84 4. If blocks

Let us assume we want to construct a condition for a public building – a library, forExercise 4.2
example – and we want to decide whether it is open (true) or not (false). First we have to
define the hairy details.

For reasons of simplicity, let us assume a not-too-complicated opening schedule. Let our
library be open every day from 8 a.m. to 6 p.m. except the weekends, i. e., Saturday and
Sunday, when our building is closed.

Try, and solve this problem as an exercise.

Our solution process goes like this: At first, we ignore the complication of the weekendSolution
closure. Obviously, we will use a CLOCK block. The hour output of the CLOCK block
will be used to decide whether it is already opening time or closing time. For sure, we
need two constants for the opening time (8 o’clock) and the closing time (18 o’clock).

For the first step, we then need a GE block, a LT block, and an AND block to formulate
our simplified condition. Please notice, that an LE block in combination with a constant
18 would keep the library open until 7 p.m. Do you copy?

Then we plot the opening condition in order to check whether our simplified solution
works or not. If not, we go back and make changes until the simplified solution works.
Our preliminary solution looks like this:

We have added two constants in order to make the plot a little nicer. The opening hours
indicator for the first two weeks of January 2012 looks like this:

Tutorial

4.4.1 Load profiles 85

The last thing to complete our solution is to sort out the weekend case. In order to checkDOW block
for the day of the week we can use the DOW block which uses the a Gregorian date as
input and returns a one for Monday, a two for Tuesday, and so forth. So, for our opening
indicator we can check whether the DOW output is less than six – i. e., the library is
open, or not. This makes a minor modification to our previous block diagram.

The opening scheme now looks as follows:

Tutorial

86 4. If blocks

This is the first place to use a macro an encapsulate the logic scheme. This makes theMacro
block diagram easier to read. Still a bit scrambled rooting.

In addition we can add some labels to our first macro which make it easier to understand
what we did.

Tutorial

4.5. Calculation list 87

Finally, our block diagram reduces to

As an exercise, add a modification to the opening schedule such that the library is closedExercise 4.3
during August an plot the annual opening scheme.

There are two If blocks named IFPOS and IFNEG which should perhaps be mentionedBlocks IFPOS and
IFNEG here, because they cover two rather common filters for (strictly) positive and (strictly)

negative numbers. Their function and use are probably self explaining, if not, please
check the Block Reference manual for further details.

4.5 Calculation list

Let us understand the concept of If blocks a little deeper by looking again at a previous
example:

This model includes five INSEL blocks, namely the T-block DO, the C-block CONST, the
S-blocks NE and SCREEN, and last but not least the I-block IF. Let us answer the
question how exactly INSEL converts this block diagram into a calculation order.

As a general rule INSEL checks at first whether there are C-blocks included in the
model. In this case INSEL finds exactly one C-block, namely the CONST block. INSEL
“sorts” this block into the first place of the calculation list – we have already seen an
example of a calculation list in Module , page 28.

Then INSEL looks for T-blocks, finds exactly one in the model, namely the DO block,
and sorts the DO block into the second place of the calculation list. In the third step
INSEL looks for S-blocks in the model. In this case there are two: the NE block and the
SCREEN block.

As mentioned earlier, INSEL can execute blocks only, when their input signals areKnown inputs
already “known”, which means that they have an actual value. The “known” signals are
all outputs of blocks in the calculation list so far, in our case this is the constant value of
the CONST block and the output of the DO block. Hence, it is possible to sort the NE
block into the third place of the calculation list. Please observe, that there is no way to
sort the SCREEN block into the calculation list so far, since its input signal is not yet
known, because the IF block does not yet appear in the calculation list.

Tutorial

88 4. If blocks

There are no more S-blocks to consider in this example, so INSEL checks for blocks of
other groups and finds the IF block. Since both its inputs are known already INSEL sorts
the IF block into the fourth place of the calculation list. Now all blocks which make use
of the IF block’s output are analyzed – in this case the only left block is the SCREEN
block, whose input is now known and can be sorted into the calculation list.

As a result, INSEL found the block order CONST, DO, NE, IF, and SCREEN.

It is now obvious that the CONST block is executed first. Due to the function of the
block the constant parameter of the CONST block is connected with the blocks’s output,
that’s all. The next block to call is the DO block, which connects its initial value with the
block’s output. Then the NE block compares its first and second output (not knowing
where the values come from). If they are different, the NE blocks writes a 1 (logical true)
to its output, otherwise a 0 (logical false).

Next, the IF block is called. Two different things can happen: Either the second input isJump parameter
equal to 0, then the successors of the IF block are skipped, or the second input is equal to
1, then the successors of the IF block must be executed. During the sorting routine
INSEL found that there is exactly one successor of the IF block, namely the SCREEN
block. Usually INSEL jumps one step to the next block in the calculation list to find the
next block to be executed, but after the IF block is executed INSEL needs to jump either
one step to the SCREEN block, execute it, i. e., display the input on the monitor and then
reach the end of the calculation list or jump two steps and skip the SCREEN block and
reach the end of the calculation list.

The decision is made by the IF block, which is the only candidate who knows the
meaning of its second input. The IF block informs INSEL what to do next, by setting the
so-called Jump parameter either to 2 (skip the next block in the list) or 1 (execute the
next block in the list)

When the end of the calculation list is reached, INSEL looks backward in the calculation
list to find the next T-block and give control to it, which means that the DO block will
increase its output by the increment defined as the block’s third parameter and the next
block is the DO blocks successor in the calculation list, i. e., the NE block. Please notice,
that the CONST block will never be reached due to the calculation list rules.

The algorithm is executed until the DO block has “fired” all its values, then on the next
call the DO block informs INSEL that nothing is left to do and INSEL ends the program.

We can summarize the discussion with a last look at the calculation list including the
block names, block groups and Jump parameter values of each block:

Number Block Group Jump

4 CONST C 1
5 DO T 1
2 NE S 1
1 IF I -2

Tutorial

4.5. Calculation list 89

3 SCREEN S -3

Please observe, that rather than pointing to the end of the calculation list the JumpForward jumps
parameters point to the block which has to be executed next. So – although the IF block
has a negative parameter in this example – I-blocks are characterised by the property
that they allow forward jumps in the calculation list.

In the discusion of timer blocks we have seen that T-blocks can be nested. It is alsoNested If blocks
possible to nest I-blocks, but it is time for a break and we postpone this topic for the
time being.

Calculate the annual mean ambient temperature as stored in file meteo82.dat.Exercise 4.4

Plot the daily mean ambient temperature as stored in file meteo82.dat.Exercise 4.5

Summary q qq q You have learnt that If blocks – or I-blocks, in short – can be used to skip
execution of blocks which are directly or indirectly connected to I-blocks.q qq q Some typical examples for blocks of the I-group are blocks which calculate
averages or cumulative sums, for example.q qq q There is a set of blocks which perform numerical fits to statistical data like the
linear regression block FITLIN, for example.q qq q A block named IF allows for the definition of practically arbitrary conditions.q qq q There are blocks like EQ, NE, etc. which can be used to construct general
conditions from very simple to very complex.

Tutorial

5 :: Delay and Loop blocks

The previous Module started with the statement “A programming language is not a
programming language if it does not provide at least one statement which enables the
use of an if-then-else structure.” The same statement is valid for loop structures: A
programming language is not a programming language if it does not provide at least one
statement which enables the use of a loop structure.

If you have studied the Tutorial from the beginning, you may intervene: We have used
DO blocks and CLOCK blocks so often, aren’t we through with loops in INSEL? No, we
aren’t. The blocks DO and CLOCK are T-blocks, not L-blocks. So, let us have a closer
look at the difference between these two block groups.

Coming back to one of the most trivial examples of this Tutorial, where we have justNo loop at all
calculated the sine of 45◦ on page 18. This example didn’t use a timer at all. The CONST
block, the SIN block, and the SCREEN were only called once. We could put the complete
model into a macro with no inputs and no outputs.

If we wish that this macro (or model) depends on a variable input angle, we could add aOne timer
DO block, delete the CONST block and connect the DO block’s output with the sine
block. This results in a loop.

We could put this complete model into one macro gain, add an input to the DO block,Two timers
and connect it to another DO block outside the macro, ending up in a nested DO block
structure. There is no limit in nesting DO blocks and there is no limit in macro depth.

So we could continue in the same way, as long as we wish: Put the complete model intoThree timers...
a macro again, add an input to the DO block, and so on.

What we can learn from this simple example is, that Timer blocks can be used to create
nested loop structures. But these loops always run over complete models, i. e., over all
blocks which are connected to the respective timer’s output and those blocks’
successors. With this concept it is impossible to create local loops.

In other words, so far in this Tutorial we have treated “linear” simulation models only.
Linear means here that any INSEL application we can write at this point follows
basically a sequential structure, i. e., normally there is a Timer block which decides on
the duration and time step of model execution and the rest of the model is executed
more or less in a sequential order, except when there is an If block included, which
allows to skip execution of some blocks depending of the conditions of the If blocks.

To express this fact in the language of structured programming, we have understood
how we can handle sequential structures and if-then-else structures. The third required

5.1. Handling control cycles 91

concept in structured programming is the concept of loops, which exactly is the topic of
this Module.

5.1 Handling control cycles

Let us look at a control cycle which is typical in measurement and control technology.

- e - Controller - System -r
�Sensor

6

+

−

w(t) x(t) y(t) u(t)?
z(t)

v(t)

The task of a control cycle is to keep a controlled process variable u within in a narrow
range close to a given set point w. The variable u usually depends on w and a
disturbance variable z.

At this point, we are not really interested in control strategies. Instead, we want to
analyze the control cycle from a structural point of view. So let us assume that the
values of the command variable w and the disturbance variable z are known. How can
we perform a calculation of the cycle states?

The sum x = w − v cannot be calculated because the sum depends on the output of the
control process, i. e., the value of the feedback variable v, which is not yet known. Since
the sum is unknown, the controller cannot be executed and therefore the values of u and
v cannot be calculated. But the value of v is necessary to know when we want to
calculate the sum x. So, what?

Closed loops like the one just described are called algebraic loops in computing. TheAlgebraic loops
solution of this problem is well known since the early times of analogue computing, i. e.,
when block diagram programming had its roots: Insert a delay element into the
algebraic loop. So what is a delay element?

The characteristic properties of a delay element are that it delays its input signal for a
specific time and, very important, that it is initialized with a value. This idea is the basis
for a huge set of applications, ranging from numeric integration methods, numeric
solutions of differential equations, and of course control cycles.

5.1.1 The DELAY block

In INSEL one delay element is a block from the group of Delay blocks named DELAY.

Tutorial

92 5. Delay and Loop blocks

x(tn)

?

DELAY
[x(t0)]

?
x(tn−1)

The DELAY block delays its input by one step. The optional parameter x(t0) is used as
initial value. If not declared, x(t0) defaults to zero. The DELAY block can be found in the
Mathematics Loops category.

Controllers are typical Delay blocks in INSEL. And in fact, assuming that the controller
starts with an initial value, let’s say y0, this simple measure solves our algebraic loop
problem. Now that both inputs y = y0 and z are known the system can deliver u and the
sensor the required value v.

In Module you used the I-block MAXX (Absolute maximum) from the StatisticsExercise 5.1
Maximum category to find the overall maximum value for the hourly global irradiance
on a horizontal surface in W/m2 as saved in file meteo82.dat.

In the category Mathematics Basics you can find an S-block named MAX (Maximum)
which outputs the maximum value of its connected inputs.

Can you use this block to find the overall maximum radiation value, too?

The solution makes use of a DELAY block, of course.Solution

Since the time series starts at midnight, the radiation data are zero during the first calls
and with an initial value zero of the DELAY block nothing happens. But when the first
radiation value greater than zero occurs in meteo82.dat, the MAX block returns this
value to the DELAY block which in return sets its output to this value.

In the next step the MAX block compares this output of the DELAY block with the next
radiation value from the file. If the value from the READ block is greater than the output
of the DELAY block, the MAX block returns this value to the DELAY block, otherwise
the DELAY block receives its old value and nothing happens.

At the end of the simulation run the absolute maximum of the radiation time series is
available at the MAX block’s output.

Tutorial

5.1.1 The DELAY block 93

In order to avoid too much SCREEN output, all data except the at-end value are filtered
through the ATEND block. The next graph shows the evolution of the maximum with
time.

It is interesting to have a look at the calculation list:

Number Block Group Jump

2 DO T 1
6 READ S 1
7 MAX S 1
1 ATEND I 2
3 SCREEN S 1
4 PLOT S 1
5 DELAY D -6

Please observe four details: (i) How the ATEND block jumps over its successor to the
PLOT block, (ii) that the DELAY block points all the way up to the DO block as its
successor, (iii) that we have used blocks from four different block groups in this simple
exercise, and (iv) that the DELAY block is the last block in the calculation list, which is a
typical property of all D-blocks.

Especially the last remark is worth a closer look. All blocks in INSEL depend on their
inputs. This was one of the very first things we have learnt in Module . Now we learn,
that Delay blocks are an exception to this rule. Why?

Delay blocks have an initial value at their output, before these blocks are called for theConstructor call
first time. Is this a miracle? Of course not. INSEL has a mechanism called constructor
call – similar to the destructor call we became acquainted with in Module , page 80.

Tutorial

94 5. Delay and Loop blocks

Before an INSEL model is executed by the inselEngine all blocks are called in this
constructor call mode.

The constructor call is the time to check the plausibility of parameters fixed in the
INSEL model. If for instance a value zero is provided as parameter of an attenuator block
INSEL generates an error message and does not execute the model in order to avoid a
division-by-zero exception. And this is the time to initialize the outputs of Delay blocks.
But what happens when a model is executed?

The inselEngine must ensure, that all blocks which make direct use of the initial value ofInputs as function
of own outputs the DELAY block have a chance to access this value, and not the value after the DELAY

block has been executed. So, in many cases all D-blocks appear at the end of the
calculation list. In principle, it is possible to add a D-block to the calculation list, as soon
as all blocks which make direct use of its output are already in the calculation list.

In the last example we have seen, that the output of the DELAY block is connected to a
MAX block, which calculates the maximum on the basis of the DELAY block’s output.
The output of the MAX block is connected to the DELAY block as input. In consequence,
this means that in case of the DELAY block its input depends on its actual output. This
will become even clearer when we have a closer look at the group of L-Blocks later in
this Module.

5.1.2 PID controller

Coming back to control cycles, let us use a PID controller to follow a given signal, a step
function, for instance.

What is a PID controller?

In order to prepare the solution, let us construct a demonstration signal.

Construct an INSEL model for a step function which runs over five minutes in time stepsExercise 5.2
of one second. The output signal shall vary between the values minus one and plus one
with a sharp ramp, changing every 60 seconds.

Tutorial

5.2. Solving differential equations 95

We have solved this problem by using two DO blocks, one ... see tutorial–ramp.vseitSolution

idea 1: time axis

idea 2: plus one, minus one cahne via expg block

ides 3: introction of PID block

5.2 Solving differential equations

Sophisticated integration of differential equations. Long history before digital
computing could overtake analogue simulation equipment

Maybe history, why digital block diagram simulation in the 60’s practically had no
chance against analogue computing - compared to today: extremely slow processors

ẋ

?

t

?

INTGRL
Approx., x0

?
x

ẋ = cos(t) ⇒ x = sin(t)

Tutorial

96 5. Delay and Loop blocks

5.2.1 The Jentsch rocket

In his wonderful book “Digital simulation of continuos systems,” published 1969, Jentsch
[?] used the simple differential equation of a starting rocket to illustrate the principle of
solving differential equations by the use of simulation languages. The equation is

a = −ṁw
m

− g

where a is the acceleration of the rocket,m the mass of the rocket (including gas), ṁ the
change in mass due to gas ejection, w is the velocity of the ejected gas relative to the
rocket, and g the gravity of Earth, g ≈ 9.81 ms−2.

Since probably the younger readers of this Tutorial have never seen an “old-fashioned”
block diagram description of a differential equation, here comes an adaption of Jentsch’s
example:

m - -r r
�
��

�
��

�
��r ��

6

�e6-

- - - e
6

- - -
? ? ?

?MPT1 MPT M m0

w 0 0A V S

g = 9.81

mL

ṁ m
−

−
− a v s

b bbHHf

Starting from ṁ, the integrator M – a delay block – with initial valuem0 approximates
the rocket massm. The change in mass ṁ is multiplied by w and divided bym by the
two blocks marked with a dot and a division symbol. Finally, the acceleration a results
from the summation block A – denoted by a small circle. By convention, the required
minus signs are written close to the arrows pointing into the summation blocks. Velocity
v and distance s are calculated by two more integrators named V and S with initial
values zero.

Jentsch lets the example run through two blocks named MPT1 and MPT over a time
interval of twenty seconds.

Block MPT1 determines the behavior of the ...

Block MPT represents a relay switches off ...

* --- Structure
S = I(0,V)
V = I(0,A)
A = -(MPT * W) / M - 9.81
M = I(M0,MPT)
MPT = REL(M - ML,MTP1)
MPT1 = KUL(KLMPT1)

* --- Parameters

Tutorial

5.2.2 Solar collector equation 97

W = 3000
M0 = 3300
ML = 300
KLMPT1 = 0,-160, 20,-160

* --- Processing
TIME = (0/0.1,20)
PRTIME = (0/0.1,20)
PRINT(1,1) M,V,S / 1000

FORMAT 1 (2(1) / 3)
HEAD 1 (M,KG,V,M/S,S,KM)

PLOT(2,1) M,V,S / 1000
FORMAT 2 (0,4000,3/0,1.E+4,4,4/0,60,5)

END
KLMPT1 = 0,-320, 18.75,0

END
STOP

Can you convert Jentsch’s rocket example into an INSEL model?Exercise 5.3

Solution

5.2.2 Solar collector equation

5.3 Loop block concept

Explain LOOP, NULL, and MPP.

f(x)

?

LOOP
xmin, xmax,∆x

?
x

loop.vseit

A LOOP block and a TOL block are connected in a loop. The LOOP block uses 1 as initial
value, 3 as final value and 1 as increment. Two SCREEN blocks display the outputs of the
TOL and LOOP block, respectively.

1.0000000
2.0000000
3.0000000

Final output 3.0
1.0000000

Tutorial

98 5. Delay and Loop blocks

2.0000000
3.0000000

Final output 3.0

Example: NULL block - root of a function, involution algorithm, regula falsi algorithm.

f(x)

?

NULL
p1 . . . p6

?
x

?
i

More applied: maximum power point calculation.

f(x)

?

MPP
xmin, xmax,∆x

?
x

?
xy

Mention only: Even more applied: Battery charge regulator – see Module 7.2

Loop Blocks and Iterations

Iteration blocks are called Loop block or short L-Blocks. In INSEL the iteration blocks
are the LOOP, MPP and NULL block.

- The LOOP block runs through a sequence of values defined by parameters, restricted
to a part of the simulation model.

- The NULL block searches a root of a continuous function.

- The MPP block simulates an ideal maximum power point tracker. In general, the MPP
block can be used to find the maximum of any unimodal function.

The output of an L-block must always be the input of a TOL (top of Loop) block.

Tutorial

PART II :: Applications and exercises

6 :: Solar meteorology

This is the first of three Modules which cover broad INSEL application fields. It
concentrates on the aspects of meteorological data that are relevant in renewable energy
applications, like solar electricity generation, solar thermal heating and cooling,
desalination systems, biomass, wind turbine simulation, storages, hydrogen technology,
building simulation, daylighting etc. INSEL fully covers all important meteorological
parameters as there are solar radiation, ambient temperature, humidity, precipitation,
and wind speed.

The Module does not cover the theoretical background for the calculations in detail.
More information can be found in the block reference manual of INSEL. A full
theoretical derivation of all the used methods can be found in the book Simulation of
Solar Energy Systems by J. Schumacher.¹

6.1 Global radiation

We start with the source of all life on Earth: the Sun. From a simulation point of view it
can be considered as a black body at a temperature of 5777 K. As such it emits
electromagnetic radiation with a theoretical spectrum following Planck’s law

E(λ, T) =
2πhc2

λ5

(
exp

(
hc

λkT

)
− 1

)−1

(6.1)

where λ denotes the wave length, h is the Planck constant 6.6260755× 10−34 J s,
c is the speed of light in vacuum 299 792 458 ms−1, k is the Boltzmann constant
1.380658× 10−23 J K−1 and T the temperature of the black body in kelvin.

The INSEL block PLANCK can be used to calculate the spectrum either as a function of
the wavelength λ, or the frequency ν or the energy of the photons hν. You find it as type
Planck’s radiation law under the category Meteorology > Solar radiation.

The real spectrum of the solar radiation which arrives at the surface of the EarthSolar spectrum
depends on many factors, like solar position, atmospheric conditions, for example. There
is a standard which defines so-called AM 1.5 spectrum at a solar radiation of
1000 Wm−2, the 1.5 means that the rays of the Sun pass 1.5 times the shortest way
through the atmosphere. This spectrum as well as the undisturbed spectrum outside
atmosphere AM 0 is available in INSEL under the category Meteorology > Spectrum.

Plot the theoretical Planck spectrum, the AM 1.5, and the AM 0 spectrum for aExercise 6.1
wavelength between 0 and 4 µm.

The Planck spectrum at 5777 kelvin is the spectrum at the solar surface. Before theHint
radiation reaches the Earth it is diluted by a factor 2.1645× 10−5. You find the dilution
factor under Mathematics > Constants.

102 6. Solar meteorology

Solution

The x-coordinate is the wavelength in micrometer, the y-coordinate shows the value of
the electromagnetic terrestrial radiation in Wm−2 µm−1.

The Stefan Boltzmann law is the result of the integral of an electromagnetic spectrumSolar constant
over all wavelengths. It says

E(T) =

∫ ∞

0

E(λ, T)dλ = σT 4 (6.2)

σ = 5.6703× 10−8Wm−2 K−4 is known as Boltzmann constant.

If the solar AM 1.5 spectrum G(λ) is integrated the result is the solar constant
Gs = 1367 Wm−2.

Calculate the solar constant with an INSEL model.Exercise 6.2

Solution

1 Not yet published.

Tutorial

6.1. Global radiation 103

We used the Global cumulation block CUM from the Statistics category and a GAIN
block from Mathematics > Basics. Our choice of the wavelength interval [0,10] and
increment 0.01 leads to the value 1368.2 Wm−2, which is close enough to the real value.
Do not forget to set the parameter of the GAIN block to 0.01.

Calculate the solar constant and plot the functionExercise 6.3

F (λ) =

∫ λ

0

G(λ)dλ (6.3)

in one model.

Replace the Global cumulation block CUM by a Summation with reset block SUMP andHint
choose an appropriate parameter.

Solution

We have set the parameter of the SUMP block exactly to the number of steps the DO
block performs, ie 1001. With tribute to laziness one could set it to any high value like
100000, for example, without having to figure out the correct number.

We have plotted the AM 1.5 spectrum in addition, and you can see that above 5 µm
nearly nothing happens any more.

Tutorial

104 6. Solar meteorology

The solar “constant” is not really constant, even if the spectrum is assumed constantDistance
Sun–Earth AM 1.5. The reason lies in the dilution factor, which is a function of the distance

between Sun and Earth. And this distance varies due to the elliptic shape of the Earth’s
orbit. Of course, INSEL has a block for the calculation of the direct normal
extraterrestrial irradiance, i. e., in the direction towards the Sun, the GON block under
Meteorology > Solar radiation.

Plot the annual variation of the solar constant.Exercise 6.4

Solution

The radiation values we have calculated so far are of rather theoretical value – exceptExtraterrestrial
radiation for extraterrestrial applications. Terrestrial data always depend on the location, this is

also true if we want to know the radiation outside atmosphere at a particular place and a
particular time.

For the calculation of the extraterrestrial radiation on a horizontal plane at a given
location INSEL provides the GOH block under Meteo > Solar radiation. The location is
specified through latitude φ (north positve, south negative), longitude λ, (west of
Greenwich positiv, east negative) and time zone Z (Greenwich mean time GMT = 0,
Central European time CET = 23, counted positive in western direction).

Plot the extraterrestrial radiation at an arbitrary location of your interest for every day’sExercise 6.5

Tutorial

6.1. Global radiation 105

noon, i. e., 12:00 zone time.

Whenever you are looking for local coordinates and time zone values, check the INSELHint
weather data base, which contains more than 2000 locations worldwide.

Solution

We live in Stuttgart, Germany. So we used our coordinates. With the CLOCK block
running in steps of one day for 12 o’clock this is our solar radiation – on top of the
Stuttgart atmosphere.

Tutorial

106 6. Solar meteorology

How much of this radiation does arrive at a terrestrial solar installation – let’s say everyTerrestrial
radiation hour of the year? The answer is difficult – of course we could say “Depends on the

weather.”

In case you have some recorded data, maybe in a resolution of one hour, then you can
just read them in and use them. The procedure how to do this, the whole Format staff –
all this has been discussed in Module . There is no need to discuss this issue here again.

Maybe you have given monthly means from a weather service, for example. Well, that is
at least a starting point. Maybe you have no idea, what even the 12 monthly mean values
are. Then the INSEL monthly mean weather data base can help. These are the locations
available:

2000 locations in
the inselWeather

data base

INSEL has access to the data via the MTM block under Meteorology > Data. The use of

Tutorial

6.2. Radiation time series generation 107

the block is very convenient: just browse to the location, ready. As an alternative you
may wish to access locations directly via their coordinates. The MTM weather data base
(via lat/long) type allows this.

Plot the 12 monthly means values in the data base closest to your home place. The globalExercise 6.6
radiation unit in INSEL is always Wm−2, by default. Plot your data in kWhm−2 d−1.

Solution

1
W
m2

=
1 k
1000

24 h
d

W
m2

= 0.024
kWh
m2d

(6.4)

Hence, we use a GAIN block with parameter 0.024.

This is our solar radiation – under the Stuttgart atmosphere:

The x-coordinate is the month, y-coordinate is the global irradiance in kWhm−2 d−1 on
a horizontal plane in Stuttgart, Germany.

6.2 Radiation time series generation

INSEL provides blocks which can generate synthetic time series of different
meteorological data, solar radiation data in particular. The GENGD block delivers daily
radiation data calculated from monthly means with excellent statistical properties over
long periods like 20 years or more. It does not include a model for climate change, this is

Tutorial

108 6. Solar meteorology

a different playground. But from year to year the monthly means of global radiation
differ significantly. Plenty of research has gone into the topic of weather data
generation, the state-of-the-art is implemented in INSEL.

Plot a time series of global radiation data on a horizontal plane over a period of one yearExercise 6.7
in daily resolution for a location of your choice.

Set the parameter for the year-to-year variability to zero, so that the given monthlyHint
mean from the MTM block is approximated as good as possible. Leave all other
parameters as their defaults (except the location data, of course).

Solution

Since INSEL offers two models for the time series generation – the auto-regressive
model of Gordon and Reddy and the Markov-matrix-based model of Aguilar and
Collares-Pereira – we used both in order to compare their respective results. To make
them comparable, the year-to-year variability parameter has been set to zero in both
cases, otherwise the time series cannot be compared because it is not known in advance,
how big the noise of the individual monthly means would be.

The x-axis shows the day of the year, the y-axis shows synthetic daily means of global

Tutorial

6.2. Radiation time series generation 109

irradiance on a horizontal plane in Wm−2. The red line 01 results from the Gordon
Reddy model, the green 02 curve is the result of the Aguiar Collares- Pereira model. At a
first glance there is no significant difference between the two.

Calculate the monthly means of the synthetic time series and compare it with the dataExercise 6.8
that come from the MTM block.

You will probably use the AVEC block for the calculation. Remember the earlierHint
discussion – it is probably a good idea to think about a Delay block.

Solution

Since the successors of the AVEC block are executed only after the condition input has
changed, the output of the MTM block needs to be delayed by one time step. Otherwise,
the one-month-ahead value of the radiation would be plotted due to the functionality of
the AVEC block.

The x-axis shows the months, the y-axis shows monthly means of global irradiance on a
horizontal plane in Wm−2. The 01 (red) line are the monthly means as recalculated from
the Gordon Reddy model, 02 (green) is the result of the Aguiar Collares-Pereira model,
03 (blue) are the values taken from the inselWeather data base.

Tutorial

110 6. Solar meteorology

Once, daily radiation data are available a time series in hourly resolution can beHourly data
generated for each day. The method is based on an autoregressive model developed by
Aguiar and Collares-Pereira. In INSEL it is available as block GENGH. For convenience
of the user, both blocks GENGD and GENGH are combined as block GENG. But the
method and models are the same: at first, a daily time series is generated from the
monthly mean value, then for each day time series of hourly data are generated from the
daily means.

Plot a time series of global radiation data on a horizontal plane over a period of oneExercise 6.9
month in hourly resolution for a location of your choice.

Solution

The x-axis shows the hour of the year for the month July, the y-axis shows synthetic
hourly means of global irradiance on a horizontal plane in Wm−2.

Only seldom a solar installation is exactly horizontal. In most cases the receivers areTilted surfaces
tilted by an angle β ̸= 0 and orientated by an azimuth angle γ towards the equator, i. e.,
to the south (γ = 180◦ in INSEL) on the northern hemisphere or to the north (γ = 0◦ in
INSEL) on the southern hemisphere, respectively.

There are plenty of models which can be used to convert horizontal data to tilted. Most
of them use the same approach: in a first step the radiation data are split up into their
beam and diffuse fractions by some statistical correlation, and in a second step both

Tutorial

6.2. Radiation time series generation 111

components are converted to the tilted surface. Concerning the beam part Gbh the
conversion can be done by pure geometry, in the case of the diffuse radiation some
assumption about its distribution over the sky dome must be made.

Since tilted surfaces always “see” a part of the ground, this portion depends on the
ground reflectance, or albedo ρ. Since it plays a minor role, the albedo is usually set
constant to ρ = 0.2. In fact – like when the ground is covered by snow – much higher
values can occur.

The correlations which calculate the diffuse fraction are based on the clearness index kt.
It is a good measure for the clearness of the atmosphere and is defined as the ratio
between the global radiation that arrives at the Earth‘s surface on a horizontal plane Gh

and its extraterrestrial pendant Goh.

kt =
Gh

Goh

Due due its definition kt can take theoretical values between zero and one. In practice,
values outside the interval [0.2, 0.8] are not very probable. Please observe, that at night,
when Goh = 0 Wm−2, the clearness index is not defined. Although it is clear that in
these cases the radiation to any orientated surface will also be Gt = 0 Wm−2 this case
can cause numerical inconvenience.

Calculate the time series of clearness indices from the hourly radiation data of the lastExercise 6.10
exercise. As an alternative you may wish to use measured radiation data from file
meteo82.dat which has been introduced in Module , page 43.

Solution

Tutorial

112 6. Solar meteorology

The x-axis shows the hour of the year again, the y-axis shows synthetic hourly means of
the clearness index.

Please observe that the problem of division by zero is handled by the DIV block by
performing no operation, which leads to constant values of the clearness index during
the night.

6.3 Diffuse radiation

The blocks which calculate the diffuse fraction from global radiation are distiguished by
the averaging interval of the radiation data, i. e., there are correlations for monthly
means G2GDM (read: global to global diffuse monthly means), daily means G2GDD, and
hourly means G2GDH. The blocks are found under the Meteorology > Solar radiation
category. The reason, why these blocks require the inputs Gh and Goh should be clear by
now.

Plot the diffuse fraction, i. e., the ratio Gdh/Gh as a function of kt for the first fiveExercise 6.11
correlations of the G2GDH block.

This exercise is a bit tricky. Instead of real radiation data, use a DO block, which runsHint
from zero to one and connect it with the Gh input. Remember, the correlations depend
only on kt.

Tutorial

6.3. Diffuse radiation 113

Solution

The x-axis shows the clearness index kt, the y-axis shows the diffuse fraction Gdh/Gh.
The correlations are: 01 (red) Orgill and Hollands correlation, 02 (green) Erbs, Klein and
Duffie correlation, 03 (blue) Hollands correlation, 04 (magenta) Reindl, Beckman and
Duffie, 05 (black) Hollands and Chra for an albedo of 0.2.

Would it not be interesting to compare the correlations with some real data? If you like,For tough guys
use any data file you have or the file meteo82.dat from Oldenburg, Germany (latitude
53.133 ◦N, longitude 8.217 ◦E, time zone 23) for the calculation of the diffuse fraction as
function of kt and bring the data and the correlations together in one plot.

The main problem with this exercise is that both tasks have completely differentSolution
independent variables. Therefore the solution is split up into subtasks. The first step is to
calculate the hourly values from meteo82.dat and write the results to a file, let’s say
ktDataOL.dat.

Tutorial

114 6. Solar meteorology

In our example you see the HOY block as a relict. It is advisable to always check the data
in files whether they show reasonable values. When you plot the diffuse data you will
find that there is a lack of data for some hours indicated by values set to −40. So we
restricted the values to the interval x ∈ [0, 1] and y ∈ [0, 1] with Gnuplot to check the
data with the following steps

Open Gnuplot from the tool bar.

Change to the hidden application data directory, like
cd ’c:\Users\Myself\AppData\Roaming\doppelintegral\INSEL\tmp.

Type load ’insel.gnu (you will see a lot of unreasonable data).

Change the x and y range to both [0,1] via Gnuplot’s Axis menu.

Set the Data Style to Points in the Styles menu.

Press the Replot button.

Et voilà.

The x-axis shows the clearness index kt, the y-axis shows the diffuse fraction Gdh/Gh

for the file meteo82.dat.

Run the INSEL model which plotted the correlations again, this time keeping theSecond step

Tutorial

6.3. Diffuse radiation 115

insel.gpl file (by renaming and copying it from the hidden application data directory
to a destination of your choice – let’s say ktRelations.dat).

Now write a Gnuplot file. As starting point you can copy insel.gnu from the hiddenThird step
application data directory. Rename the file and make some changes. For instance:

Comment: We choose the filename ktExample.gnu
set autoscale xy
set data style lines
set nolabel
set data style lines
set pointsize 0.4
set xrange [0:1]
set yrange [0:1]
plot ”C:/Temp/ktDataOL.dat” using 1:02\

title ”Measured at Oldenburg 1982” with points,\
”C:/Temp/ktRelations.dat” using 1:02\

title ”Orgill and Hollands”,\
”C:/Temp/ktRelations.dat” using 1:03\

title ”Erbs, Klein and Duffie”,\
”C:/Temp/ktRelations.dat” using 1:04\

title ”Hollands correlation”,\
”C:/Temp/ktRelations.dat” using 1:05\

title ”Reindl, Beckman and Duffie”,\
”C:/Temp/ktRelations.dat” using 1:06\

title ”Hollands and Chra, albedo 0.2”

Type load ’ktExample.gnu (or how ever you named the file) at the Gnuplot promptLast step
and you’re done.

The x-axis shows the clearness index, the y-axis shows the diffuse fraction.

Tutorial

116 6. Solar meteorology

The correlations all seem to overestimate the measured Oldenburg data. But a look at a
data set measured by the International Energy Agency in Uccle, Belgium 1960 shows
that this is probably a problem of the Oldenburg data.

We are now ready to use the correlations to separate the global radiation time series of
our earlier exercises.

Plot a time series of global and diffuse radiation together in one graph.Exercise 6.12

Solution

Tutorial

6.4. Radiation on tilted surfaces 117

The x-axis shows the hour of the year, the y-axis shows synthetic hourly means of
global irradiance on a horizontal plane (red) and diffuse irradiance on a horizontal plane
(green), both in Wm−2.

6.4 Radiation on tilted surfaces

It is now a simple task to convert the horizontal data to tilted on a surface of any
orientation, like vertical façades, for instance. With help of the SUNAE block, which can
calculate the position of the Sun in two different coordinate systems (we had used it in
Module , page 35f already) it is easily possible to calculate the global irradiance on one-
or two-axis tracking systems.

The INSEL block which contains different algorithms for the conversion of horizontal
data to tilted is named GH2GT (read: global radiation horizontal to global radiation
tilted). As mentioned earlier, the difference between the model lies in the many ways
how the diffuse fraction can be handled. The simple Liu and Jordan model assumes an
isotropic distribution over the complete sky dome, others – like the Hay model – assume
a brightening of the horizon band and the circumsolar region.

Convert the time series of hourly global and diffuse radiation from your previousExercise 6.13
applications to

a surface, facing the equator with a tilt angle equal to the locations latitude
φ± 15◦ if |λ| > 30◦,

a surface with the same tilt angle but with azimuth tracking,

a surface with two-axis tracking.

Tutorial

118 6. Solar meteorology

Plot the daily means. In all three cases calculate the annual gain in kWhm−2 a−1 and in
percent.

These are the results in the overview:Solution

Gain: 10.28 %
Gain: 130.76 kWh Total: 1272.36 kWh

Gain: 24.84 %
Gain: 377.35 kWh Total: 1518.95 kWh

Gain: 28.66 %
Gain: 458.56 kWh Total: 1600.16 kWh

The calulation of the radiation data is straight-forward.Fixed tilted surface

The x-coordinate is the hour of the year, the y-coordinate shows the global radiation
horizontal (green) and tilted (blue) in Wm−2. The annual gain against the horizontal
data is 131 kWh or 10 %, again for Stuttgart, Germany.

Tutorial

6.4. Radiation on tilted surfaces 119

The calculation of the cumulated energies and the percental gain is in the macro:

Inputs are the global radiation tilted and horizontal. Both are cumulated over the whole
year. The horizontal part is subtracted from the tilted radiation and divided by 1000 by
the ATT block. Since the used time step is one hour we can interpret the radiation data
in Wm−2 now in kWhm−2.

Before we can calculate the percental gain the tilted radiation is divided by a factor of
1000 and then divided into the horizontal sum. The GAIN block converts the normalized
value to per cent by multiplication of 100.

Finally two SCREEN blocks are used to display the figures. We used the format strings

(’’Gain:’’,F7.2,’’ kWh ’’,’’Total: ’’,F7.2,’’ kWh’’)
(’’Gain:’’,F7.2,’’ %’’)

Please note again that the quotes in the Fortran format string are two single quotes and
not one double-quote.

The only difference to the first case is the use of a SUNAE block for the calculation ofOne-axis tracking
the necessary surface azimuth orientation. The second output of SUNAE is used for the
azimuth input of GH2GT (instead of the 180 degrees constant). The gain is significant,
377 kWh or 25 %.

Again there is only one small modification compared to the previous case. Now the tiltTwo-axis tracking
angle is no longer constant but calculated from elevation α as

β = 90− α

The gain is not very much higher than in the one-axis-tracking case, 459 kWh or 28.7 %.

There is one point in the conversion of horizontal data to tilted which should beDivision by cos θz
mentioned here. As was said before, the beam fraction of the horizontal radiation Gbh is
converted to the tilted radiation Gbt by the pure geometric formula

Gbt = Gbh
cos θ
cos θz

where θ denotes the incidence angle between the Sun ray and the receiver’s normal
direction and θz is the zenith angle. In the continuous time, cos θz will be zero at sunrise

Tutorial

120 6. Solar meteorology

and sunset – this is a problem. INSEL solves it by not allowing the fraction cos θ/ cos θz
to be greater than 20.

The following graph shows the strange behavior of cos θ/ cos θz for the calculation of a
two-axis-tracking system in Stuttgart, Germany:

The time series has been calculated with rubbish.vseit in theRubbish
examples\tutorial\module6 directory.

The reason why we show this example is that the world of simulation is full of traps andDon’t trust
unchecked results! dangers. Whatever you calculate, try to cross-check the plausibility of your results in as

many ways as possible. Analyse intermediate results, check whether they make sense or
not. Otherwise you are endangered to calculate series of street numbers rather than
reasonable results. Hence, learn from this hint to be careful with the trust into your
simulation results.

6.5 Ambient temperature time series generation

From former PV Module At our first attempt INSEL displayed the following error:

Tutorial

6.5. Ambient temperature time series generation 121

Compiling jakarta6_1.vseit ...
No errors or warnings
Running insel 8.1 ...
LOLP = 33.05 %(t) = 29.81 %(E)
E05246 Block 00057: Too many iterations in routine GENT
E02122 Error: Unable to generate hourly ambient temperature data
LOLP = 8.88 %(t) = 8.77 %(E)
Normal end of run

The first LOLP shows that the result unchanged – cf. page 159. But then the error that
the GENGT block is unable to generate hourly ambient temperature data leads to the
termination of the simulation model.

Two remarks can be made to this problem.

First, sometimes unexpected things occur in the computer world. Swallow this bitter pillRemark 1
as a general experience – that’s life. But what happened and how can we help us out?

Well, the generation of time series in INSEL is naturally based on a random number
generator. It is possible to initialize this generator by a parameter – in most cases a value
of 4711 is chosen as default in INSEL. So, one idea is to change this value to 4712, for
instance. But in this case it doesn’t help.

Whenever the GENGT block sees a new month and a new monthly mean temperatureRemark 2
value on its input signals, the block starts the synthesis process of hourly data for the
complete month. Then the monthly mean value which arises from the stochastic process
is calculated. It will practically never be the same value as the monthly mean on the
block’s input. Hence, the block has to tolerate some deviation between the two.

In case of the GENGT block this value is 2 kelvin, by default. If the deviation is higher
the block makes a completely new attempt to generate the temperature time series. If
the deviation is still higher, a third attempt is made. And so on. In order to avoid an
endless loop after a certain number (100 by default) of attempts the algorithm gives in,
stops the stochastic process, and displays the error message which we have seen before.
Let us try and increase the tolerance parameter from 2 to 3 kelvin.

And bingo!

Second, why does the GENGT block try to generate new ambient temperature data atRemark 2
all? As mentioned before the GENGT memorises only the month of hourly data, which
is calculated when the month input changes. Since we run the simulation model with
three different battery sizes the CLOCK block is executed three times and makes
changes from month 12 to month 1 two times. Therefore, three completely different
years are simulated.

Actually this is not what we want, since we would like to see the impact of the battery
size on the load coverage. If we run the simulation model with an increment of 10, i. e.,
vary the battery sizes from 50 to 150 cells in series by ten instead of 50 we get this graph

Tutorial

122 6. Solar meteorology

and see that the LOLP does not go down smoothly but in small ups and downs. At 120
and 150 battery cells in parallel the LOLP goes up even. The reason is that we calculate
the LOLP under different meteorological conditions which does not make much sense.

Therefore, we should separate the time series generation process from the parameter
variation. Hence, we run one year and save the meteorological data to a file. Then in the
parameter variation process we read in this file instead of generating new weather data
for each setting. In addition, it is practical to save the load data in this file, too. This will
save some execution time and simplifies the model to some extent. It is best to use our
former application jakarta4.vee and just paste in a WRITE block.

The model for the final parameter variation looks like this

jakarta7.vee

Tutorial

6.5. Ambient temperature time series generation 123

Tutorial

7 :: Photovoltaics

During the course of this Tutorial several aspects of photovoltaic simulation have been
covered already. In Modules and the PVI block has been introduced and examples like
plotting I-V curves and module temperature profiles were explained. The topic of
maximum power point trackers has been touched in Module in the context of Loop
blocks.

In this module some typical tasks will be presented which occur frequently in the
project work of a photovoltaic engineer. Let’s start with a simple simulation model of a
grid-connected PV generator.

7.1 Grid-connected PV generators

The main components of a grid-connected PV system areq qq q PV generatorq qq q Maximum power point trackerq qq q Inverterq qq q Weather, i. e., time series of global irradiance, ambient temperature and sometimes
wind speed

Of course, weather is not really a component, but from INSEL’s point of view there is no
principal difference between components and other things which influence the
performance of components – they are all just blocks. Concerning the weather, we will
keep things simple for a start, because the topic has already been discussed in detail in
Module . So let us assume the location of our first investigation is Oldenburg in
Germany and our generator is orientated towards south with a tilt angle of 70 degrees.
In this case, we may use the weather file meteo82.dat from Module and simply read in
the required meteorological data.

The temporal resolution of the data is one hour which is a typical time step for PV
simulations. The length of the data is one year which should be the minimum for the
calculation of the energetic performance of PV systems. Since our aim is to analyze
some system performance aspects in detail, we use a READD block so that we can
directly access specific days, weeks or months comfortably – this method has been
presented in Module , page 56 f.

The next step is to decide which PV module we are going to use for our first example.
Usually PV cells and modules are simulated in INSEL by using the PVI block with the
underlying two-diode model. The main problem here is to find a set of parameters for a
specific module.

INSEL provides different methods to get access to these parameters. The most
convenient way is to use one of the modules in the INSEL data base which includes

7.1. Grid-connected PV generators 125

several thousand parameter sets. If a module is not included in the module data base
INSEL provides methods to determine its parameter set – we will come back to these
methods later. For now, let’s choose a module which is in the data base.

A convenient way to choose a module from the data base is to use the PV modulePV browser
browser of the PVI block’s PV Module tab.

Click the radio button Choose product, choose a manufacturer from the Manufacturer list
and a module from the Product list. The browser will show the main data sheet
information of the selected PV module in the lower half.

The PV module browser gets its information from an ASCII file named pvModules.dat
which can be found in the data directory of INSEL 8.

The second important component of a grid-connected PV generator is the inverter.Inverter data base
Similar to the PV module data base there is a data base for hundreds of market-available

Tutorial

126 7. Photovoltaics

inverters. The browser is integrated in the IVP block’s Inverter pane.

The inverter data are saved in the data directory in file inverters.dat

Construct the block diagram for a grid-connected PV generator with SunGlobe modulesExercise 7.1
A 165 P and the selected SMA inverter Sunny Boy 3000. Make sure that the voltage,
current, and power levels fit reasonably. Analyze some details of the system
performance.

The block diagram is rather simple:Solution

The file meteo82.dat has been described in detail in Module , page 52. Since we are
interested in the global irradiance in south direction at a tilt angle of 70◦ and the
ambient temperature, we need access to the 7th and 10th data column in the file and the
Fortran format is (18X,F5.0,10X,F5.1,26X) – do you copy?

A reasonable PV generator for the Sunny Boy 3000 inverter could have about 3 kWp and
since one module has a nominal power of 165 W a total of 20 modules would result in a
3.3 kWp generator. The nominal voltage of the module is 34.4 V so that two strings of 10
modules in series each would fit with the voltage range requirement of the inverter.

Do not forget to set the temperature mode of the PVI block to NOCT mode. If you would
use IN3 mode, the yield of the generator would be overestimated because of unrealistic

Tutorial

7.1. Grid-connected PV generators 127

low module temperatures.

Since the open-circuit voltage of the module is about 40 V, ten modules in series should
never reach 500 V on the DC side and we can set the search interval for the mpp tracker
to [0,500]. An accuracy of 0.1 V should be sufficient.

As always, it is recommended to check first if the data from the file are read correctly.
The next plot shows one week, starting from the first of June 1982 – nice weather in
Oldenburg, quelle surprise!

Since the irradiance and power values are of order 1000, we have multiplied the ambient
temperature by a factor of 100 so that the order of the numbers is comparable. We see
that the temperature varies between 20 and 30 ◦C. The radiation data reach values of
about 800 Wm−2. This is comparatively low for June. The large tilt angle β = 70◦ is the
reason for it.

The reason for the large tilt angle is, that the data were recorded for a self-sufficient
laboratory building, the Energielabor of the Oldenburg University – very innovative at
that time to construct a building without grid connection. When you analyze the
performance data over a whole year you will find that the tilt angle is optimized with
respect to winter operation and low elevations of the Sun. We will come back to some
aspects of the Energielabor building and its technologies later.

To come back to the plot, the blue and magenta lines are the DC and AC power outputs.
They reach a maximum of about 2000 W, so maybe the inverter is oversized or the PV
generator is undersized. A quick view at the maximum DC power during the whole year
shows that the highest value is 2917 W. Did you find the same value with the MAXX
block? q qq q

Tutorial

128 7. Photovoltaics

We are now going to investigate some more details of the grid-connected PV generator
model.

Calculate the annual energy yield of the system in kWh and in kWh/kWp.Exercise 7.2

We have put the calculation into a small macro which uses the AC power output of theSolution
IVP block as input.

The connection of an attenuator block with a factor 1000 for the conversion of watt to
kilowatt hours, a global cumulation block and a screen block shows that the annual
energy yield is 2868 kWh. Another attenuator with parameter 3.3 for the nominal power
of the generator shows 869 kWh/kWp.

Please observe again that we can simply use the power output of the inverter and think
of the watt unit as watt hours, since the simulation time step is one hour. For a different
time step an additional attenuator block would be required. For example, if the time step
is 15 minutes, we have to divide the power by a factor four in order to have the correct
value for the watt hours. In practice, you would probably use the value 4000 for the
parameter of the attenuator which converts watt to kilowatt hours. q qq q
Check how often the maximum power point voltage is outside the inverter’s DC voltageExercise 7.3
range of 268 to 600 volt and how much energy is lost if the corresponding DC power is
neglected in the energy cumulation. Do not count the night hours when the MPP
voltage is zero.

Again, we present the counter in a little macro.Solution

The required logics is quite straight forward. We need three comparisons for the zero
voltage case, the lower voltage limit of 268 V and the upper limit of 600 V (which is
never reached), one OR block to distinguish between the upper and lower limit cases
and, in addition, one AND block for the night values. A global cumulater block CUM is
used to count the outside range cases and find a value of 464 occurrences during
daytime and 4751 with the night cases.

Tutorial

7.2. Optimum tilt angle 129

In order to check that the model calculates the DC power in the low voltage range
correctly, we have analyzed the DC power output for the cases where the voltage is less
than 268 volt. The graph shows the result filtered through an IF block:

The highest values are in the 10 W range and therefore less than the self consumption of
the inverter. They sum up to 2.1 kWh which is absolutely negligible. q qq q
The restriction to the voltage level of an inverter in the simulation of a grid- connectedConclusion
PV generator can be neglected, provided that the system is properly dimensioned.
However, if a system is designed at the voltage limit of the inverter it is possible to
quantify the losses as a function of the PV generator size easily.

7.2 Optimum tilt angle

We have started the discussion about grid-connected PV with the data set measured in
Oldenburg at a tilt angle of 70 degrees towards south. This is far from the optimum
regarding annual electricity production.

Calculate the optimum tilt angle for this location in Germany (latitude 53.133 degreesExercise 7.4
north, longitude 8.217 degrees east, time zone 23).

We need to read the global and diffuse horizontal radiation data from meteo82.dat (andSolution
meteo83.dat for comparison). The Fortran format string to read these data is
(8X,2F5.0,46X). We assume that the maximum lies between 25 and 45 degrees. So, we
let a DO block vary the tilt angle in this range in steps of one degree. The rest should be
clear.

Tutorial

130 7. Photovoltaics

The routing is a bit fancy. The macro in the upper right corner contains blocks for some
output, i. e., this graph:

and this table:

25.000 1118.070 1098.687
26.000 1121.154 1102.355
27.000 1123.917 1105.800
28.000 1126.400 1108.936
29.000 1128.609 1111.791
30.000 1130.576 1114.401
31.000 1132.248 1116.796
32.000 1133.634 1118.946
33.000 1134.796 1120.762
34.000 1135.715 1122.342
35.000 1136.364 1123.676
36.000 1136.786 1124.862
37.000 1137.013 1125.833
38.000 1136.959 1126.593
39.000 1136.681 1127.062
40.000 1135.881 1127.030

Tutorial

7.2. Optimum tilt angle 131

41.000 1134.784 1126.710
42.000 1133.391 1126.105
43.000 1131.705 1125.215
44.000 1129.727 1124.042
45.000 1127.454 1122.584

This is the macro:

The result for the optimum tilt angle is 37◦ with 1137 kWh/m2 and 39◦ with
1127 kWh/m2, respectively. It can be observed that the maxima are rather flat, i. e., there
are only about four kilowatt hours less in a range of ±5◦, which corresponds to
approximately 0.35 % less energy yield. q qq q
If you have studied Module on solar radiation, you are now ready to simulate the
performance of grid-connected PV generators “from scratch,” i. e., without the necessity
of measured data time series in hourly resolution. The only requirement is monthly
means of radiation and temperature data, which are available for all locations worldwide
– in the inselWeather data base, for instance.

In the previous example we have seen the optimum tilt angle for a PV generator inExercise 7.5
Oldenburg is about 38 degrees. Calculate the annual AC energy yield for the generator
which we had used several times in this module, i. e., 20 SunGlobe A 165 P modules and
a Sunny Boy 3000 inverter from SMA.

Since we have constructed all parts which are necessary to solve this task several timesTwo hints
already, you may wish to start from the example nurnberg.vseit in the
examples\electricity\griConnectedPV directory.

When you use the inselWeather browser you will find that the location Oldenburg itself
is not available. Aurich is quite close to Oldenburg.

Only a few things need to be modified when you start from nurnberg.vseit.Solution

Tutorial

132 7. Photovoltaics

Radiation and temperature data: Change the location of the inselWeather browser from
Nurnberg to Aurich. Since the latitude, longitude and time zone parameters are required
three times by the blocks GOH, GENGT, and GH2GT, we have used three global
constants from the Mathematics > Constants category to define Latitude, Longitude and
TimeZone and set the values to the data displayed by the inselWeather browser –
remember that eastern longitudes require a minus sign.

PV generator settings: Browse to the SunGlobe A 165 P module and set the number of
modules in series and in parallel in the PVI block’s Simulation pane.

Inverter: Browse to the SMA Sunny Boy 3000 inverter.

Energy cumulation: We can use the macro from page 128.

The result is a total AC energy yield of 3451 kWh or 1046 kWh/kWp. Compared to the
values 2868 kWh or 869 kWh/kWp that we had calculated for the 70 degrees tilt angle
case, this is a gain of twenty per cent. q qq q
The last graph, which displayed the hourly time series of DC and AC energy productionPlenty of ink, not

much information of a PV generator near Oldenburg, Germany, wastes a lot of green ink. Due to the nearly
twenty thousand data points (two times 8760 hours of the year 1982) it is even hard to
distinguish between the DC and the AC data.

Replot the graph with the daily DC and AC power peaks only.Exercise 7.6

A MAXXP block with p = 24 does the job.Solution

Tutorial

7.2. Optimum tilt angle 133

q qq q
Another option to plot a large amount of data is a carpet plot, as implemented in block
PLOTPMC:

Explain and mprove appearance.

Tutorial

134 7. Photovoltaics

7.3 Parameter identification methods for PV modules

7.4 Module mismatch and shading problems

7.5 Thin-film modules

7.6 Stand-alone PV systems

Einleitung überarbeiten. In the concrete application in Oldenburg there is a PV
installation with a tilt angle of 70 degrees towards south. The reason behind this tilt
angle is that the building at the University of Oldenburg (the so-called Energielabor)
used to be an autonomous system at the time. In this case, the optimum tilt angle is not
defined through maximum energy output but through the storage system, a lead-acid
battery in this case. The goal is to minimise the time when the battery is empty.

Let us have a closer look at the simulation methods required to calculate the
performance of systems, which have no grid access. Readers not interested in
stand-alone PV systems can proceed to the next section starting on page ??, although
some of the topics presented may be of interest nevertheless. The most typical
autonomous PV system consists of a PV generator, usually directly coupled to a battery
via a battery charge regulator and several loads, of course. The following sketch depicts
the usual circuit.

Bild verschönern

PV

ee%%

cable losses cable lossesq aa a
load

aaaa a
q

q
BCR

q

q
q

QQ

bb
""

battery

As can be seen, the components PV generator, battery charge regulator, battery and load
are connected in parallel and therefore – according to Kirchhoff’s rules and neglecting
cable losses and the blocking diode – must share the same voltage, or, in other words,
the sum of all currents must be zero at all times. This forms the basic idea of the INSEL
simulation model of stand-alone PV-battery systems.

We will look at the components one by one, let’s begin with the battery.

7.6.1 Batteries in INSEL

Tutorial

7.6.1 Batteries in INSEL 135

The beginning of such a section is usually something like: Batteries are electrochemical
devices which can be charged and discharged. They work as follows. . .We would like to
suggest a different approach.

In INSEL there is a simulation model for batteries, the so-called Hyman model. It isHyman model
implemented in two blocks named BTI and BTV and allows for the calculation of battery
current and battery voltage, respectively. This is the BTI entity editor:

A short look into the block reference – via a click on the Help button – shows that the
block requires two inputs, i. e., voltage and time – the latter as always in INSEL as
increasing time measured in seconds – and an optional input which depends on the
block’s capacity mode. The outputs are the battery current I and the actual battery
capacity Q. The third output is the charge efficiency η which has a meaningful value
only in case of charging, of course. We come back to the other capacity mode shortly.

The performance of the block depends on the actual values of its parameters, 19 in this
case. You can see that two times five parameters have to be known, one set for the
charging case and one set for the discharge case. For instance, the open circuit voltage
parameter is of order 2 V, which is a very typical value for a single lead-acid battery cell.
At some later stage, you may want to know how the values can be calculated for a real
battery which is not part of the – so far tiny – battery parameter data in INSEL. For the
time being just accept that the displayed values have been determined for a VARTA

Tutorial

136 7. Photovoltaics

block battery Vb 624 with a nominal capacity of 100 Ah.

Please observe that the nominal capacity is just one parameter in the general BTI block
and can be adapted freely, as can the initial capacity value. The block can be used to
simulate series and parallel connections of individual cells, which lead to a
multiplication of the cell voltage in the series case and a multiplication of the current in
case of parallel connections. From a numerical point of view there is no problem in
sight. However, in reality connecting batteries in parallel must be treated with care,
since defects in one or more cells can lead to unwanted discharging of the complete
battery bank – but that is a different story.

Three parameters are connected with the name Wood to be used with Wood’s charge
efficiency model. Some further details to Wood’s model can be found in the block
reference manual. The same applies to the self-discharge parameter which ends our
short excursion to the BTI block’s parameter set.

Now let us play a bit with our new toy to see and understand in more detail how it
functions and where the traps and dangers are – and there are quite some.

How does the I-V characteristic of our battery look like if it is fully charged (capacityI-V curve
100 Ah) or fully discharged (capacity 0 Ah)? In order to answer these two questions the
Capacity input 3 mode is useful because it allows us (similar to the PV module
temperature case) to define a value for the actual battery capacity.

Concerning the voltage range, it is useful to know that a single lead acid battery cellExercise 7.7
should never be discharged under 1.8 V and battery gassing starts at 2.4 V per cell. Now
you!

Solution

Okay, our solution is a bit quick-and-dirty, but it does all we wanted. Did you remember
to multiply the voltage range by the number of cells in series? Here comes the graph as
it was meant.

Tutorial

7.6.1 Batteries in INSEL 137

The first observation is that positive and negative current values occur. The conventionSign convention
is that for charging positive values and for discharging negative current values are used.

Second, an empty Vb 624 battery (red curve) can be charged at a maximum current ofEmpty or not?
about 40 A within the recommended voltage range. On the other hand, it can be further
discharged at a current of 15 A. How can this be? Is the battery not empty when the
capacity is 0 Ah? In fact, it is not and the reason for this is the somewhat strange
definition of the actual capacity which can even take negative values down to −60 Ah in
case of the Vb 624.

The electrochemical background for this behavior is provided by the so-called Peukert
law, which describes how the amount of charge which can be taken from a battery
depends on the magnitude of the discharge current. Since this module is not meant as a
lecture on electrochemistry we skip any further discussion of this topic, except two
remarks.

The first (not too serious) is that you should take negative capacities as an example fromTwo remarks
real life to the joke about the empty room (Mathematicians like the guy who wrote this
module, have a strange kind of humor – so say some): If two people move into an empty
room and three come out, one guy has to enter it later, so that the room will be empty
again.

The second (more relevant) is that, as a general rule, batteries should never be
discharged by more than about 70 % (some say 60, others 80 %) of its nominal capacity.
That means, we will construct our simulation models in such a way that negative
capacities do not occur – if possible.

Coming back to the resulting graph: We can see that the fully charged battery (greenFully charged case
curve) still accepts small charging currents according to the Hyman model, which would

Tutorial

138 7. Photovoltaics

lead to capacity values higher than nominal capacity. In the BTI and BTV blocks this is
suppressed since the Wood model assumes that for a battery at 100 per cent of its
nominal capacity the charge efficiency is down to zero.

The last observation from this example is that a fully charged battery can obviously be
discharged by a bit less than 80 A, which means that nearly 80 per cent of its capacity
can be discharged within one hour. This statement is true only, if we neglect that during
this hour the capacity will change continuously. q qq q

Discharging batteries

But this remark leads us to the definition of the nominal capacity of a battery. It isNominal capacity
defined as the amount of charge, measured in ampere hours, which can be extracted
from a fully charged battery with a nominal current In so that after a nominal time tn a
nominal final discharge voltage Vd,n is reached – it is not a trivial experiment in real life
to determine the nominal capacity of a real battery.

The “usual” definition of the nominal time is tn = 10 hours, the most common definition
of the final discharge voltage is Vd,n = 1.85 V per cell. Hence, a fully charged 100 Ah
battery would be empty after 10 hours, if continuously discharged at 10 amps.

Let us do the experiment in INSEL. It is common practice to plot the time axis on aExercise 7.8
logarithmic scale in such applications.

Solution

The INSEL model is straight forward, maybe except the detail that we have started
“recording” time after 6 minutes (360 seconds) rather than confusing the LOG10 block
by having to deal with log 0.

Tutorial

7.6.1 Batteries in INSEL 139

Our result presents a final discharge voltage slightly higher than 1.85 V – we have
already talked about error tolerances in simulation models several times. q qq q
Some battery manufacturers use a nominal time of 100 h for the determination of theSerious business?
nominal capacity of their batteries. Consequently, the nominal discharge current for a
100 Ah battery goes down to 1 A. It follows from the previous discussion that the
battery voltage at the end will be higher than 1.85 V after 100 hours of discharging.
What does this mean?

Repeat the discharge experiment and use a discharge current of one ampere instead ofExercise 7.9
ten.

Solution

In this case, we have changed the time step to 0.1 hours (instead of 360 seconds) and
used a GAIN block for the simulation time in seconds as required by the BTV block.

Tutorial

140 7. Photovoltaics

The result is that after 100 hours the voltage is down to 1.95 V (remember log 100 = 2)
and it is possible to further discharge the battery for another 50 hours before the final
discharge voltage limit of 1.85 V is reached. q qq q
Nominally, yes, but a real battery would be dead after such a deep discharge.
We believe that plenty of batteries in stand-alone systems with charge regulators based
only on voltage measurements had a poor lifetime, because small discharge currents
have lead to deep discharges of the batteries.

Charging batteries with PV modules

When we want to charge a battery with a PV module or a PV generator, it must be
assured that the voltage levels of both battery and PV fit together. For instance, the
module which we have used earlier – the SunGlobe A 165 P – has an open-circuit voltage
of 43.2 V with its MPP at 34.4 V. Hence, an ideal battery for this module would have a
nominal voltage of approximately 34 V, which can simply be reached by connecting 17
cells in series (numerically easy, in practice not always possible to find on the market).

How do the I-V curves of such a battery (empty, i. e., capacity 0 Ah and/or full i. e.,Exercise 7.10
capacity 100 Ah) and one SunGlobe module under standard test conditions (1000 W/m2,
25 ◦C, AM1.5) look like? Plot it!

Tutorial

7.6.1 Batteries in INSEL 141

This is what we did to demonstrate the idea:Solution

We used an empty and a fully charged battery with identical parameters and suppressed
unwanted data via a small macro. This is the result:

and this is the macro which simply restricts the battery current values to the interval
between zero and six ampere.

In conclusion, the battery will be charged in a voltage range approximately between 35
and 40 V with currents in the range up to 5 A. This means that in one hour
approximately 200 Wh can be charged into the battery. Since the battery has a nominal
capacity of 100 Ah and a nominal voltage of 17× 2 = 34 V the nominal energy content
of the fully charged battery is 3.4 kWh. This means that it will take approximately
3.4/0.2 = 17 h to charge the battery with one module illuminated under STC. q qq q

Tutorial

142 7. Photovoltaics

The numerical problem to solve is to find the intersection between the two actual
I-V curves of the PV module and the battery. Thereby, in each time step the battery
capacity will increase as a function of the irradiance.

For a first experiment assume that we have the PV module in a laboratory under a solarExercise 7.11
simulator which radiates 1000 W/m2 constantly and charges our empty battery,
connected in parallel to the PV module. Assume that the module temperature is kept
constant at 25 degrees Celsius. In Module the NULL block has been introduced. Can you
use it for the battery charge experiment?

Solution

We have set the parameters of the DO block to 1, 30, 0.1 to run through 30 hours. The
conversion to the second signal required by the BTI block is done by a GAIN block with
parameter 3600.

The example demonstrates the idea that the PV current and the battery current must be
equal, or their difference must be zero. This is exactly what the NULL block does, it
iterates the output signal, ergo the voltage, in the range specified by its parameters (we
have chosen 0 to 50 with a tolerance of 0.001) so that its input becomes zero (or null, in
German).

Tutorial

7.6.1 Batteries in INSEL 143

In addition, we have plotted the charge efficiency in per cent. As can be seen from the
graph the efficiency is constant in a wide range according to Wood’s model, and
therefore the increase in capacity is linear. Only when the battery reaches its nominal
capacity, the efficiency goes down rapidly, and drops to zero, when the battery is full. q qq q
The next graph shows, how the module output power changes with time.

The module power decreases with time, not down to zero but it stays at a value slightly
less than 110 W. This means that we simulate this power as charging the battery, but
dissipate the energy in the battery in a gassing process.

Tutorial

144 7. Photovoltaics

Another interesting quantity to observe is the battery voltage.

The green and the blue constant lines show the recommended lower (1.85 times 17) and
upper (2.4 times 17) voltage limits. In our experiment the voltage is always within these
limits, which is good for the battery.

Let us come back to the discharge process and use a former model again for a smallDeep discharging
experiment. What happens if we try to discharge the battery longer?

For two hundred hours with one ampere trying to extract 200 Ah out of our 100 Ah
battery, for instance.

Tutorial

7.6.1 Batteries in INSEL 145

The model in the BTI block lets the capacity go down to minus 60 Ah and then keeps the
capacity constant – the level of this value is one of the Hyman parameters, by the way.
So, the numerical model is stable, whatever nonsense is done to it.

Unfortunately, real batteries do not have the same behavior, they just flush off. This is
the reason why some electronic guys come in and construct controllers like battery
charge regulators which try to avoid unregular operations of batteries in real life.

In INSEL there is a block which simulates a battery charge regulator with fixed voltage
limits – we have mentioned already that this is not the optimal solution for a BCR in real
life. The block, named BCR, is basically a NULL block with additional restrictions. It
delivers an indicator, when the load should be switched off in order to avoid deep
dischgarge of the battery and it returns a value how much energy is lost in case of
gassing.

Have a closer look at the construct (don’t worry, we are not going to speak about The
Matrix).

The BCR block

∆I

?

BCR

? ? ?

Vop SLd Pdump

p1 . . . p7

Tutorial

146 7. Photovoltaics

The BCR entity comes with a careful default parameter set for a 2 V cell.

Since BCR is similar to the NULL block it should be clear that it is an L-block and
requires a corresponding TOL. Like the NULL block it iterates its output signal Vop in
such a way that the input ∆I becomes zero, plus minus the value of parameter Current
tolerance.

In case this cannot be accomplished within the limits specified by the parameters it
suggests to switch off the load by setting SLd = 0 or calculates the amount of power
Pdump which would better have been dumped before it leads to gassing inside the battery.

When the load should be switched off it is not wanted that the load is switched on again
immediately but that the battery is given some time to recover. Therefore, there is a
hysteresis before the load switch is set to one again, defined through the parameter
Voltage limit load switch on. The dump voltage parameter defines the maximum allowed
operation voltage for the battery. The other parameters are not so important for the time
being. Of course, the maximum number of allowed iterations should be greater than
zero.

Now let us rebuild the former example where the battery was discharged constantly
with 1 A, but now controlled by a BCR in order to avoid deep discharge.

This is a first attempt to solve the problem.

We have changed the default parameter set of the BCR block to 1.85 V for the switch-off
voltage, and 1.9 V for the switch-on voltage.

Instead of the connection of a constant one ampere discharge current we are now
looking for the correct operating voltage of the battery coupled with a load which
constantly tries to discharge one ampere from the battery. Since the battery discharge

Tutorial

7.6.1 Batteries in INSEL 147

current is negative by convention, we have used a positive value for the discharge
current of one ampere instead of using −1 A and a CHS block.

The somehow frustrating result is not much different from our previous example.

A small difference occurs only at the end of the discharge process when we reach the
−60 Ah capacity. The reason for the difference is that – in contrast to the previous
application – we now contol the lower voltage limit and have restricted it to 1.85 V,
demonstrated by the next graph.

Tutorial

148 7. Photovoltaics

However, the battery is still deep discharged in the model. Did you already find out,
why? Yes, the reason is that we have calculated that we should switch off the load, but
we have not done it although the BCR block informed us that it would be wise to do so
(by setting the second output of the BCR and TOL blocks to zero). Hence, we should
multiply this information into the current balance before the BCR decides how to handle
the situation.

But, what a frustration! The result again remains nearly unchanged.

The simple reason is that very small discharge currents can lead to deep discharging of
batteries, if only controlled by the battery voltage. In consequence, this means that a
switch-off voltage of 1.85 V is too high. So, what about a 2 V minimum?

Tutorial

7.6.2 Implementation of load profiles 149

Now everything seems fine. The battery is not discharged below 80 % of its nominal
capacity. But what a birth! The nearness of reality – nothing is simple. But now we are –
almost – prepared for a realistic simulation of a stand-alone PV system.

7.6.2 Implementation of load profiles

The main influence on the performance of any stand-alone PV system is how users of
the system use the system. Huge efforts are done world-wide to find out, how the
energy requirements of users or customers are.

In this part of the Tutorial we will discuss some of the basic techniques how load profiles
can be implemented in INSEL. Of course, these profiles depend extremely on the
location. For a small case study, let’s assume we want to design a PV system for a – let’s
say – community somewhere near the equator. They have a lot of available solar
irradiance during the day, that’s for sure. And they have some basic load during the day
for equipment like computers and stuff and definitely some consumers like lighting in
the evening hours – this is where the batteries come in at latest.

Let’s assume the following electricity demand profile: a basic load of 10 kW, a morningExercise 7.12
peak of 50 kW between 6 and 9 o’clock, a noon peak of 30 kW between 12 and
14 o’clock, and an evening peak of 100 kW between 18 and 23 o’clock. At the weekend –
say Saturdays and Sundays – we give half the people off to stay on the beach or
anywhere. This means, we divide the peaks by two but leave the basic load unchanged.
We compensate this with no vacations in the course of the year.

The block diagram is not complicated, but maybe you try it on your own before you
carry on reading.

Tutorial

150 7. Photovoltaics

Let us start with one of the peak loads – which are candidates for macros. For example,Solution
the morning peak macro

delivers the desired result, i. e., 50 kW from six to nine, else zero.

The trick with the weekend case should also be clear now: create disjoint cases, like day
of the week less than six and day of the week greater or equal six, handle both cases as
required and sum up the results. This is a very old block diagram idea.

The complete block diagram is this:

As you have certainly noticed, our load profile definition was independent of the
calendar week, so that it can be described as a function of weekday and time without
further complications. But it should be clear how the principle idea can be extended to
vacation periods and whatsoever exceptions – just more work, or Gschäft, like the
Swabians say.

We used the first week from January 01, 2007, since it practically started with a Monday.
We ended up with this graph:

Tutorial

7.6.3 System sizing 151

It is easy to find that the mean load is 35.4 kW via an AVE block, for instance. This
corresponds to an average daily energy demand of 849 kWh. q qq q
In order to design a stand-alone system properly it is necessary to dimension the PV
generator and the battery. From the user’s point of view both components should be as
large as possible since this implies the highest usability. But when economic aspects
come in it is clear that reasonable sizes of the components are required. Hence, a
compromise between user comfort and costs should be found. It is clear, how costs can
be quantified but how can user comfort in a stand-alone PV system be measured?

7.6.3 System sizing

One way to quantify the performance of a stand-alone PV system makes use of the lossLoss of load
probability of load probability LOLP. Two different definitions of this parameter exist, one in terms

of time intervals

lolp =

∑
Tlol ∆t∑
T ∆t

where the sum in the numerator is taken over all time steps when the load cannot be
satisfied and the sum in the denominator is taken over all time steps.

The other definition uses the energy relation

lolp =

∑
Tlol PL∆t∑
T PL∆t

where PL denotes the required load power during the particular time step.

Tutorial

152 7. Photovoltaics

The complementary value of the loss of load probability is the load coverage, defined as

lc = 1− lolp

The LOLP can obviously only be calculated through a simulation model.

Let us briefly discuss reasonable starting values for the sizes of PV generator and battery
in a stand-alone system.

Battery sizes are sometimes measured in days during which the load can be fullyBattery sizing
covered by the battery alone. In our case, a 1-day battery would have a nominal energy
content of approximately 850 kWh. As a rule of thumb, a battery size of about 1.5 days is
a reasonable starting point. Hence, in our case the battery size should be approximately
1200 kWh.

The next thing to decide is the voltage level at which the system shall be operated. Sine
we are trying to design a rather large stand-alone system, let us fix the DC voltage to
approximately 240 volt. For simplicity, let us assume that we can upgrade our Vb 624
battery to arbitrary dimensions. One cell has a nominal voltage of 2 V, which implies
that we have to connect 120 cells in series. This means that one such block has an energy
content of 240 V × 100 Ah or 24 kWh so that 50 of these blocks are required in parallel.

The question of the PV generator size cannot be answered without fixing a location first.PV sizing
It was already mentioned that we have something close to the equator in mind, why not
Jakarta in Indonesia. From the inselWeather data base we find that Jakarta is located
6.18 degrees south at a longitude of 106.83 degrees east (i. e., -106.83 degrees in INSEL).
The time zone is 17. The annual average global radiation on a horizontal plane is
236 W/m2. Assuming a PV module efficiency of about 15 per cent we will get
approximately 236× 0.15× 24 = 850 watt hours electricity per square meter and day.

If we further assume that the PV generator should be able to charge the complete
battery within one day a PV area of 1200/0.85 ≈ 1400 m2 is required. When we decide
to use the SunGlobe module from the beginning of this Tutorial’s Module with a module
area of about 1.3 m2 that gives us round about 1000 modules, or a generator with a peak
power of 165 kW.

In a first step, let us assume that all previously defined loads are DC loads, directly
coupled to PV generator and battery as depicted in the electric circuit diagram on
page 134, neglecting cable losses and blocking diode.

You are now ready to simulate the defined stand-alone system over one year and
calculate the two LOLPs with respect to time and energy.

The first step is to provide meteorological data for Jakarta, i. e., global radiationExercise 7.13
horizontal and ambient temperature. This procedure has been shown in section for the
radiation data. What is new is the generation of temperature data.

Tutorial

7.6.3 System sizing 153

Solution

The only difficulty might be the question how to access the inputs for the annual mean
ambient temperature, annual temperature amplitude etc. These required values are
provided by the MTM block. Since they are not default outputs of the MTM entity they
must be added manually by modifying the number of block outputs in the MTM block’s
entity editor.

This example is a good opportunity to use a carpet plot for the representation of the
annual time series.

A very smooth annual distribution of the radiation data can be observed – excellent
conditions for stand-alone systems with high load coverage.

In the second step we try to check, whether our battery definition really fits the loadExercise 7.14
requirements.

We have done most of the modeling work earlier in this module. So, we opened theSolution
model with the load profile prof00.vseit, saved it as jakarta2.vseit, opened the

Tutorial

154 7. Photovoltaics

bcr2.vseit model, selected all the relevant objects, copied them to the clipboard,
opened the jakarta2.vseit file and pasted the battery staff.

A few further modifications let us test the discharge behavior of the battery under our
load profile and leads to this block diagram:

jakarta2.vseit

From the earlier discussion of the bcr02.vseit model we have learnt that reasonable
values for the BCR are 2 V for the switch-off voltage, 2.1 V for the switch-on voltage and
2.4 V for the dump voltage. Since we want to use 120 cells in series and 50 cells in
parallel, all voltage values have to be multiplied by 120. But what about the nominal and
initial capacity? The parameters are valid for one cell of the lead-acid battery, so they are
independent of the size defined through the parameters for series and parallel
connections. Hence, we start with a full battery by setting the initial value of the
capacity to 100 Ah.

Please recall the sign convention for the load as discussed earlier. When everything is
fine, a two day simulation gives this graph:

We see that only 50 per cent of the battery capacity (in total 5000 Ah, since we have

Tutorial

7.6.3 System sizing 155

connected 50 cells in parallel) are used before the load is disconnected. Maybe later we
can reduce the switch-off voltage a little but for the time being 50 per cent is just right.

Before we look at the charging process let us briefly check to voltage levels.

The discharge voltage varies between 250 and 240 volts. Please observe the voltage
increase to 245 V after the load is disconnected. q qq q
The next question is, how to connect the PV generator? The nominal voltage of one
module is 34.4 V. Since we expect the battery to be charged somewhere between 250 V
and 288 V a number of 260/34.4 ≈ 7.6, seven or eight modules should be connected in
series. Let’s try seven first. Since we have planned to use 1000 modules we need
1000/7 ≈ 142 modules in parallel, make it 150.

Let us charge an empty battery under standard test conditions. We did a similarjakarta3.vseit
experiment on page 142 already using a NULL block. Now we use a BCR.

Please observe again the sign convention: The PV generator delivers a positive current
and since the battery is charged and the charge current is also positive by definition, the

Tutorial

156 7. Photovoltaics

battery current contributes negative to the BCR balance. In other words, the battery is
considered as a load.

In fact, after 12 hours the battery is completely full. Observing the voltage again, shows
that the charge voltage increases from 255 V and is limited by the BCR to a value of
288 V.

Now we put everything together and run a one year simulation. It should be no problemjakarta4.vseit
to construct the block diagram.

Tutorial

7.6.3 System sizing 157

We were careful and started the simulation for January with a fully charged battery and
observed the battery capacity.

Does your result look like this? Then you are probably happy with the system layout.
But you have forgotten – like we did at first – that now under real operating conditions
the temperature mode of the PVI block should be set to NOCT mode rather than
assuming that the module temperature is given by input number three.

The result for January should be this:

Tutorial

158 7. Photovoltaics

It is amazing how big the impact of the module temperature is. Our generator is not able
to fully charge the battery at all.

When you remember how we have dimensioned the PV generator we considered the
nominal conditions of the PV modules. In reality the module temperature is usually
much higher than 25◦C, and therefore, the voltage much lower. Let’s try to compensate
this effect by enlarging the number of modules in series from seven to eight and plot the
graph again.

Everything seems fine. Now the same for the whole year.

Tutorial

7.6.3 System sizing 159

Nice.

Let’s calculate the LOLP. The solution is easy. Try it for yourself first.Exercise 7.15

This is the macro we used for the calculation of the loss of load probability in terms ofSolution
time and energy:

Obviously, we should use a CUM block for the different integrations. Cumulating a
constant value of one in each time step gives us the total number of time steps, which
we divide into the total number of time steps in which the load switch (2nd output of the
BCR block) is equal to zero – or its logical inverse is equal to one, calculated by the INV
block. A GAIN block with a factor of 100 gives us the LOLP with respect to time in per
cent.

The second input of the macro is connected to the total load in kW, multiplied with the
number of time steps when the load is off. The SCREEN block outputs

LOLP = 33.05 %(t) = 29.81 %(E)

if the format parameter is set to

’’LOLP = ’’,F5.2,’’ %(t) = ’’,F5.2,’’ %(E)’’

Tutorial

160 7. Photovoltaics

This means that we have a load coverage of approximately 70 %. Now you may want to
modify the sizes of the PV generator and/or the battery. For instance, increasing the size
of the PV by 20 % (180 modules in parallel instead of 150) gives us

LOLP = 31.99 %(t) = 27.91 %(E)

which is not much of a gain. Going back to 150 modules in parallel and increasing the
battery capacity by 20 % (60 cells in parallel instead of 50) has a much higher impact and
we find

LOLP = 9.58 %(t) = 9.82 %(E)

Please observe that a modification of the sizes has an immediate influence on the
system’s operating voltage due to the slanted I-V characteristic of the battery.
Changing parallel connections is relatively harmless in this respect.

A modification of the number of either PV or battery cells in series implies that the
settings of the BCR must be adapted. Otherwise the operation points may no longer be
reasonable.

7.6.4 System studies

Now that we have a working simulation model of a stand-alone PV system let us do a
few investigations into the system behavior, because it is very easy to access all
variables of interest. We try to answer the question, whether the electric performance of
the system is reasonable or not.

For our analysis we start from the example jakarta4.vseit and save is as
detail1.vseit before we make any modifications. For the system sizes we choose 150
PV modules in parallel, 8 in series, and 50 battery cells in parallel although – from the
LOLP point of view one would probably choose something like 60 batteries in parallel
since this brings down the LOLP from 30 to 10 per cent.

The first thing to look at is the system operating voltage. Just connect the voltage output
of the BCR to the PLOT block and see what happens in January.

Tutorial

7.6.4 System studies 161

We can observe that the battery uses the full voltage range which we have specified in
the BCR and that we reach both limits from time to time. Another thing we can see
immediately is that when the battery reaches the lower voltage limit of 240 V switching
off the load results in an immediate increase of the battery voltage and it remains at
open-circuit voltage until the battery is charged again by the PV generator.

Look at the first of January, for instance, and plot battery capacity and voltage,
charge/discharge current of the battery and output power of the PV generator before the
BCR.

Tutorial

162 7. Photovoltaics

In order to have all curves in one reasonable plot, we have downsized the capacity (blue
curve) by a factor 10, plotted the PV power in kW (brown curve). The green curve shows
the system voltage, the red curve is the battery charge/discharge current. Please observe,
how the BCR limits the charge current even before the battery is fully charged.

Feel free to do more investigations into the model on your own.

Our last example will check how much energy is lost due to the fact that we operate theExercise 7.16
PV generator coupled directly to the battery rather than in its MPP. Plot the PV power
against the MPP power and see how much energy we loose.

Solution

It is assumed that you know by now how to come to this graph. If you have any problem
with the block diagram, peep into detail2.vseit and check section , page 64.

The figures are 303 MWh compared to 364 MWh, hence we loose approximately 20 per
cent. But please notice that not all the MPP power could be used by the system due to
the limited battery capacity. q qq q
Maybe one hint is useful: The PVI block calculates the PV current only as a function ofHint
the battery voltage. It does not care, how much of this PV power can actually be stored
in the battery. If you want to evaluate this fraction you must balance the PVI block with
the Pdump output of the BCR block. We will not go into the details here because this
Tutorial (un)fortunately (depending on the point of view) cannot be endless.

We will close the section about stand-alone systems with a first look at how parameter
variations can be implemented in INSEL models. In Modules and ?? we will come back
to the topic more systematically.

Tutorial

7.6.5 Parameter variations 163

7.6.5 Parameter variations

In INSEL we distinguish very scrupulous between block inputs and block parameters.
Inputs are considered to change practically in each time step while block parameters are
usually constant during a whole simulation run. Therefore, it is not trivial to modify
block parameters during a simulation run. Nevertheless, in some cases tricks and
workarounds enable parameter variations.

Looking at the PVI block and its two-diode-model equation shows that very large and
very small numbers like Boltzmann constant or electronic charge and comparatively
large numbers like temperature in kelvin have to be evaluated in exponential functions.
This is numerically very sensitive and one reason, why INSEL evaluates the
two-diode-model equation in current densities rather than current.

In fact, the PV generator dimensions as defined through the PVI block’s parameterSingle cell
simulation settings are internally reduced to a single cell. Then the equations are evaluated and

finally the cell voltage is simply multiplied by the total number of cells in series and the
cell current by the total number of cells in parallel. This means that there is absolutely
no difference in the calculation of a PV generator with 150 modules in parallel and the
calculation of a PV generator with only one module in parallel and the current
multiplied by 150, for instance. The same argument holds for the number of cells in
series of the BTI block.

This macro demonstrates the idea:

In consequence, when we want to make a parameter study with variable PV and battery
dimensions, we may set the corresponding parameters to one in the PVI and BTI blocks,
use two DO blocks for the respective values and multiply their outputs into the currents.

Vary the battery size between approximately one and three days, i. e., in our exampleExercise 7.17
between 50 and 150 batteries in parallel. Start from jakarta5.vseit, make the
modifications and save the model as jakarta6.vseit, for example.

Solution

Tutorial

164 7. Photovoltaics

The result looks reasonable. q qq q
What, if we would like to vary the PV size in the same diagram? Only a new DO block isFor freaks!
required to vary the number of PV modules in parallel, let’s say from 100 to 150 in steps
of ten.

We have to modify the loss-of-load-probability macro a little bit.Solution

The output is a bit frustrating, however.

Tutorial

7.6.5 Parameter variations 165

Well, although we used a parametric plot block with the number of PV modules from
the DO block as curve parameter this is not really the solution. Can you find out what
happened?

We can approach the problem from two sides. The Gnuplot view or the INSEL view.
Let’s start with the Gnuplot view.

As you have learnt earlier, the PLOTP block writes its data by default to insel.gpl ininsel.gpl
the hidden application data directory. These are the first records:

0.5000000E+02 0.3785388E+02 0.3982829E+02
0.6000000E+02 0.3584475E+02 0.3658619E+02
0.7000000E+02 0.3603881E+02 0.3515315E+02
0.8000000E+02 0.3517123E+02 0.3341349E+02
0.9000000E+02 0.3469178E+02 0.3236130E+02
0.1000000E+03 0.2929224E+02 0.2980828E+02
0.1100000E+03 0.2708904E+02 0.2853823E+02
0.1200000E+03 0.2800228E+02 0.2841235E+02
0.1300000E+03 0.2860731E+02 0.2802343E+02
0.1400000E+03 0.2885845E+02 0.2775716E+02

0.1500000E+03 0.2875571E+02 0.2746183E+02
0.5000000E+02 0.3592466E+02 0.3582610E+02
0.6000000E+02 0.2985160E+02 0.2989381E+02

You must know that Gnuplot plots a new line every time it finds an empty record in the
data files. Now it becomes obvious, what the problem is: The blank line comes too early.
A down-to-earth approach would be to use a text editor and move all the wrong blank
lines one down. You could then use the interactive Gnuplot window, type in
load ’insel.gnu and get the pretty printed graph.

Tutorial

166 7. Photovoltaics

If you wish to understand what happens in INSEL take a look at the principal structureModel structure
of the block diagram.

Three Timer blocks and one If block control the PLOTP block. Since the PLOTP block is
a successor of the CUMC block the PLOTP block is called only when the CUMC block
decides to let its successors be executed. Hence, what does the CUMC block see on its
condition input? As long as the battery capacity values are equal to 10 the CUMC block
continues cumulating its inputs.

The first time the number of battery cells in parallel is not equal to ten but twenty, the
CUMC block calculates the outputs and the PLOTP block is called. Please observe again
what we have seen in Module already, that the CUMC outputs a value of 10 rather than
its input 20 because the CUMC block delays this value (which is very practical).

It should be clear how the calls of the PLOTP block continue for 20, 30 battery cells in
parallel and so forth. What if this parameter reaches 150? Again the CUMC block
cumulates its inputs. When does it stop?

The answer is, when the condition input changes its value back to 50. How can this
happen? Only when the DO block for the battery block is reseted by the DO block for
the PV size variation. What is the PV size in this case? 110 modules rather than 100. So?
The PLOTP block is called with the condition 110 modules in parallel and starts a new
line – too early from a logical point of view – but for human logics only, not the logics of
the block diagram.

Is there no way out then? What about delaying the PV size parameter with a DELAY
block (initialized by zero – or 100 which leads to a similar result)? Unfortunately, we get
the same plot as before. Why? Let’s look at the calculation list via the File > Show
calculation list menu.

Not what we
wanted Number Block Group Jump

17 CONST C 1

...
30 CONST C 1
57 DO T 1
58 DO T 47 --!
56 CLOCK T -1 1
14 HOY S 1 2
9 GAIN S 1 3

...
15 MTM S 1 25
60 GENGT S 1 26
35 TOL -L 1 27

Tutorial

7.6.5 Parameter variations 167

52 DIV S 1 28
...

13 SUM S 1 36
55 BCR L -10 37
65 INV S 1 38
45 MUL S 1 39
64 CUMC I -39 40
53 DIV S 1 41
7 GAIN S 1 42
54 DIV S 1 43
8 GAIN S 1 44
63 SCREEN S 1 45
68 PLOTP S -45 46
69 DELAY D -48 --!

What do we see? Our DELAY block becomes the last block in the calculation list. But
when is it executed? The Jump parameter of the CUMC block points to the CLOCK
block. Once the CLOCK block is finished it returns to the DO block number 58 due to its
Jump value of −1. The DO block changes the number of batteries from 10 to 20 (at the
beginning) and returns control to the CLOCK block. The next time the CUMC block is
called it sees a changed battery parameter and therefore its successors are executed –
down to the PLOTP block and the PLOTP block returns to the CLOCK block.

When the CLOCK block finishes, it returns to the DO block number 58. When this DO
block is finished – i. e., has reached 150 battery cells – it jumps 47 steps forward to the
DEALAY block which changes its output in return. The successor of the DELAY block is
the DO block 57 which changes the number of PV modules from 100 to 110.

Hence, when the CUMC block is called the next time it sees 50 cells on the condition
input. The PLOTP block is called – but with 110 modules. Ergo, wrong. In other words,
INSEL has sorted the DELAY block between the outer DO block and the DO block for
the variation of the battery size.

Can we force INSEL to sort it into a different position? Remember, the position of a
block in the calculation list depends on the input signals connected to it. In our attempt
the only input to the DELAY block came from the outer DO block and therefore the
position of the DELAY block in the calculation list is rather logical. If we want to make
the DELAY block depend on the inner DO loop, we must add a second kind of dummy
input to the DELAY block – the output from the inner DO block, for instance. Please
check the modified calculation list.

What we wanted

57 DO T 1
58 DO T -1
56 CLOCK T 46 --!
14 HOY S 1 1
9 GAIN S 1 2

...

Tutorial

168 7. Photovoltaics

15 MTM S 1 24
60 GENGT S 1 25
35 TOL -L 1 26
52 DIV S 1 27

...
13 SUM S 1 35
55 BCR L -10 36
65 INV S 1 37
45 MUL S 1 38
64 CUMC I -39 39
53 DIV S 1 40
7 GAIN S 1 41
54 DIV S 1 42
8 GAIN S 1 43
63 SCREEN S 1 44
68 PLOTP S -45 45
69 DELAY D -47 --!

and the result.

Now we may lean back and be happy that this works. q qq q
7.7 The hybrid system Energielabor

Tutorial

8 :: Solar heating and cooling

This Module is related to the simulation of solar-driven heating and cooling systems.
Starting from the behavior of single components like water- and air-based solar
collectors, heat exchangers, storage tanks, sorption wheels, evaporative humidifiers and
closed absorption cooling machines, more and more complex systems are developed.
These systems reach from simple water-based solar heating systems to complete
solar-driven open or closed desiccant cooling systems.

The solar collector data base (static models) includes over 300 market-available water
based flat plate and evacuated solar collectors, some market available absorption cooling
machines are included in the data base, too.

8.1 Solar collectors

We start with the utilization and behavior analysis of two types of solar air collectorAir collectors
models, implemented in the SCAIRC and SCAIRCD blocks. The model of the SCAIRC
block is a quite simple static model without consideration of the collector heat capacity
and a very fast algorithm. The more complex dynamic model of the SCAIRCD block
considers the thermal mass of the solar air collector.

The decision which one of the two models should be used depends on the purpose of the
simulation. If only the annual energy production is calculated in hourly time steps, the
simple static model is normally sufficient. For detailed analysis of measurement data
with sampling times in the range of several minutes or even seconds, for example, the
static model won’t deliver sufficient results. In this case the utilization of the dynamic
model is the right decision.

Plot the outlet air temperature of the static and the dynamic solar air collector for a timeExercise 8.1
period of 3600 s with a time step of 5 s for an inlet and ambient temperature of 20 ◦C, an
air flow rate of 0.3 m3 s−1, 900 Wm−2 solar irradiation on the collector plane, which is
switched off after 1800 s and a wind speed close to the collector of 1 m s−1. The collector
parameters are given in Table for both collector types.

You’ll find the solar air collector blocks in the category Thermal energy > Collectors. UseHint
the DO block for the time period and logical blocks from Mathematics > Logics to switch
off the solar irradiation after 1800 s.

At first, we create a macro for the time and radiation data.Solution

The rest of the model is trivial then.

170 8. Solar heating and cooling

Parameters
Numbers of collectors in series 3
Numbers of collectors in series 1
Collector tilt angle / ◦ 34
Collector length / m 12.5
Collector width / m 0.96
Channel height / m 0.095
Channel width / m 0.060
Number of channels 16
Plate thickness / m 0.0014
Optical efficiency (τα) 0.80
Insulation thickness / m 0.06
Insulation heat conductivity / Wm−1K−1 0.04
Absorber heat conductivity / Wm−1K−1 238
Emissivity glas cover 0.88
Emissivity absorber front 0.16
Emissivity absorber back 0.085
Emissivity channels 0.085
Distance absorber/ front cover 0.025
Thickness back cover material / m 0.002
Density back cover material / kgm−3 3500
Density absorber material / kgm−3 2702
Specific heat back cover material / J kg−1 K−1 500
Specific heat absorber material / J kg−1 K−1 500

Table 8.1: Parameters for the static and dynamic solar air collector simulation.

This is the result:

Tutorial

8.1. Solar collectors 171

The x-axis shows the time in s, the y-axis shows the air temperature at the collector
outlet in ◦C. As expected, the curves show that the static model reacts immediately to
the change in radiation while the thermal mass of the collector leads to a steady
decrease in collector outlet temperature.

For water-based collectors so far only a static model SCETA stimmt nicht mehr! isWater collectors
included in the inselST library, which is used for both flat plate and evacuated collectors.
The collector performance and efficiency is described by the four parameters, absorber
area, maximum efficiency, linear and quadratic heat loss coefficient. This information is
normally given on the data sheet of each market available solar collector.

Plot the collector efficiency in per cent and the outlet temperature in ◦C of a flat plateExercise 8.2
and an evacuated collector as a function of the solar irradiation on the collector plane,
starting from 100 Wm−2 to 1000 Wm−2, with a temperature of 20 ◦C for both, water
inlet and ambient air temperature. The collector parameters are given in Table for both
collector types.

Use the DO block for the variation of the solar irradiation with an increment ofHint
1 Wm−2. Use GAIN blocks from the Mathematics > Basics category to multiply the
collector efficiency with 100 to get the value in per cent.

The solution is not difficult.Solution

Tutorial

172 8. Solar heating and cooling

Parameters Flat plate Vacuum tube
Absorber area / m2 0.9141 0.9141
Maximum efficiency η0 0.806 0.794
Linear heat loss coefficient /m2 KW−1 3.666 0.132
Quadratic heat loss coefficient / m2 K2 W−1 0.0155 0.010
Sp. heat capacity of collector fluid / J kg−1 K−1 3900 3900
Number of collectors in series 1 1
Number of collectors in paralell 1 1
Temperature mode inlet temp. inlet temp.

Table 8.2: Collector parameters.

This is the result:

The x-axis shows the solar radiation in the collector plane in Wm−2, the y-axis shows
the collector efficiency in % and the temperature in ◦C. Line 1 and 2 refer to the collector
efficiency and line 3 and 4 show the outlet temperature of the flat plate and the
evacuated collector.

8.2 Storage tanks

Two types of storage tanks are available in the Thermal energy > Tanks category, a fully
mixed (block TANKFM) and a stratified storage tank (block TANKST). Both tank models
can be used for heat and cold storage as well.

The characteristics of the storage tanks with respect to their size and heat losses areFull mixed or
stratified

Tutorial

8.2. Storage tanks 173

described by six parameters in case of the fully mixed tank. In case of the stratified
storage tank two more parameters are necessary to define the effective vertical heat
conductivity and the number of nodes N , in which the storage volume shall be divided.
The maximum number of nodes is limited to 200. However, in normal cases, depending
on the storage size, 5 to 20 nodes are sufficient for nearly all calculations.

The temperature of all N nodes (tank sections) are connected to an output. Output
number N + 1 is connected to the energy content of the storage tank Q in joule . Since
the default number of outputs is set to 5, the number of outputs has to be adapted to the
number of nodes increased by one for the energy content output.

To analyze how the two storage tank types perform, use both blocks with the defaultExercise 8.3
parameters and load them by a heat source with a constant temperature of 90 ◦C and a
mass flow rate of 0.1 kgm−2 over a time period of 18 000 s. Afterwards, both tanks shall
be unloaded with an inlet temperature of 30 ◦C and a mass flow rate of 0.1 kgm−2 for
another 18 000 s. Divide the stratified storage tank into 7 layers, plot the output
temperature of outputs 1, 4 and 7 and the output temperature of the fully mixed tank in
one graph over the whole time period of 36 000 s.

Use a DO block for the time period of 36 000 s with an increment of 20 s.Hint

The solution is straight forward again.Solution

And the graph is:

Tutorial

174 8. Solar heating and cooling

The x-axis shows the time in s, the y-axis shows the output temperature in ◦C. Line 1, 2
and 3 refer to the output temperature of the stratified storage tank on node 1, 4 and 7.
Line 4 shows the output temperature of the fully-mixed storage tank.

As clearly visible from the graph, the temperature of the stratified storage tank increases
and decreases much faster and reaches a much higher maximum temperature as in case
of the fully mixed storage tank. The reason for this difference in the loading behavior is
obvious.

If the fact is considered, that in the stratified storage tank always the medium with the
lowest/hottest temperature is exchanged by the hot/cold medium of the heating
source/load, whereas in case of the fully mixed storage tank always the higher/lower
temperature of the mixed medium is exchanged. Due to the greater temperature
difference between heating source/load and the return temperature from the stratified
storage tank more energy is stored/extracted in the same time period as in the fully
mixed tank.

8.3 Heat exchangers

All together three different types of heat exchangers are currently available in the the
thermal tool box. In the simple heat exchanger models for parallel, counter and cross
flow heat exchangers the heat transfer efficiency is simply calculated from the overall
heat-transfer coefficient UA in WK−1, the specific heat of the two fluids cp in J
kg−1K−1 and their mass flows rates in kg s−1. These heat exchanger models can be used
for all kind of fluids like air, water, oil, etc.

The constant efficiency heat exchanger is a very simple model simulating a heat
exchanger with constant heat recovery efficiency, which can be defined by the user as

Tutorial

8.3. Heat exchangers 175

parameter. However, the effect of changing mass flow rates is not considered in this
block. Additionally, the nominal electricity can be defined for the calculation of the
electricity consumption of rotating heat exchangers. The input of the rotation speed has
no influence on the calculated results as long as the rotation speed is grater than zero.
This function can be used to consider operation modes without heat exchanging
function, e.g. when the heat exchanger is bypassed or in case of a rotation heat
exchanger, if there is no rotation.

The third available heat exchanger is a real physical model of an air based cross-flow
heat exchanger, which considers despite of different mass flow rates of the two air
streams also condensation and icing effects within the heat exchanger, including the
transfered condensation and latent enthalpy. With its 20 parameters the block can be
adapted to the size of each cross-flow heat exchanger, even if heat transfer ribs are
included between the heat exchanger plates. However, the construction details of the
heat exchanger have to be known.

Further heat exchanger models for earth heat exchangers and water sprayed cross flow
heat exchangers for evaporative cooling are currently under development.

Use the constant efficiency heat exchanger with a heat recovery efficiency of 0.8, an airExercise 8.4
inlet temperature on the hot side of 70 ◦C and an air inlet temperature on the cold side
which is increased from 1 ◦C to 50 ◦C. Set the rotations speed to a value grater than zero
and print the two inlet and the two outlet temperatures.

Use the DO block to increase the temperature of the air at the cold side inlet.Hint

Solution

Tutorial

176 8. Solar heating and cooling

The x-axis shows the calculation steps, the y-axis shows the inlet and output
temperature in ◦C. Line 1 and 2 refer to the input temperatures on the hot and cold side,
line 3 and 4 show the temperatures at the heat exchanger outlet.

To demonstrate how a heat exchanger block can be integrated in a model for heat
transfer between two systems, a complete model of a solar based heating system will be
developed in the next exercise, consisting of evacuated solar collectors and a stratified
heat storage tank .

Use the evacuated solar collector and the stratified storage tank as described in theExercise 8.5
collector and storage tank exercise. Analyze two cases, in the first one, connect the
evacuated solar collector directly to the storage tank. In the second case, integrate a
counter flow heat exchanger from Thermal > Heat exchangers > Simple heat exchangers
with the default parameters between the evacuated collector and the stratified storage
tank. Print the energy content of the storage tank for both cases in one graph for a time
period of 36 000 s with a time step of 20 s, a solar irradiation on the collector plane of
900 Wm−2 and an ambient temperature of 20 ◦C. Since the tanks are not unloaded, set
the mass flow of the load to zero and the load temperature e.g. to 30 ◦C.

For this example it is necessary to connect the output temperature of the storage tankHint
and/or the heat exchanger to the input temperature of the collector/heat exchanger.
However, at calculation start the output temperatures of the components are not known,
therefore DELAY blocks form Math > Loops have to be integrated between the outputs
and the inputs. A DELAY block always outputs the calculated value of the previous time
step. Therefore, an initial value has to be defined as parameter, to provide an output
value for the first calculation time step. In case of the storage tank and heat exchanger
the initial value can be set to the initial temperature of the storage tank of 20 ◦C.

Tutorial

8.3. Heat exchangers 177

Solution

The x-axis shows the time in s, the y-axis shows the energy content of the storage tank
in joule. Line 1 refers to the energy content of the storage tank which is directly
connected to the collector and line 2 shows the energy content of the storage tank,
which is connected to the heat exchanger.

As visible from the graph, there is only a marginal difference between the energy
content of the two storage tanks. This means, it doesn’t matter if a heat exchanger is
included in the system or not, although the heat exchanger has only a heat transfer
efficiency of about 70 %.

To analyze this effect, print for the same boundary conditions the input and outputExercise 8.6
temperatures of the two collectors and the input temperature of the storage tank, which
is connected to the output of the heat exchanger.

Solution

Tutorial

178 8. Solar heating and cooling

The x-axis shows the time in s and the y-axis shows the temperature in ◦C. Line 1 and 2
refer to the input and output temperature of the collector without heat exchanger. Line 3
and 4 show the input and output temperature of the collector with heat exchanger and
line 5 the input temperature of the storage tank, which is connected to the output of the
heat exchanger.

As visible from the graph, the input and output temperatures of the collector with heat
exchanger are much higher than the input and output temperatures of the collector,
which is directly connected to the storage tank. However, the input temperature of the
storage tank, which is connected to the heat exchanger (line 5), is nearly equal to the
input temperature of the storage tank, which is directly connected to the collector. This
means, that the integration of a heat exchanger just leads to a temperature lift in the
collector circuit. This causes some higher collector losses, which are visible in the
marginal differences between the storage tank input temperatures and the stored
energies.

Use the cross-flow heat exchanger with condensation and icing with the defaultExercise 8.7
parameters. Plot the input and output temperatures of the heat exchanger for a cold air
inlet temperature, which is increased from −15 ◦C to 25 ◦C with a constant relative
humidity of 60 %, a warm air inlet temperature of constant 22 ◦C with a relative
humidity of 60 % and an air volume flow of 0.1 m3 s−1 on both sides. Print in the same
graph indicators showing if condensation and icing occurs within the heat exchanger.

Use the DO block to increase the cold air input temperature, but be aware that negativeHint
values are not allowed in this block. To built indicators for condensation and icing use
logical blocks from the Math menu, which output a 1 if the condensed water or ice mass
is greater than zero and a 0 if no condensation or no icing occurs.

Tutorial

8.3. Heat exchangers 179

Solution

The x-axis shows the calculation step, the y-axis shows the temperature in ◦C. Line 1
and 2 show the input temperature of the cold and warm air stream, line 3 and 4 show the
output temperatures of the two air streams. Line 5 and 6 are the indicators for
condensation and icing. As clearly visible from the graph, the output temperatures do
not increase linear with the increase of the cold air inlet temperature, as long as icing
and/or condensation occurres.

To analyze how the heat transfer efficiency of the heat exchanger is influenced byExercise 8.8
condensation and icing effects, calculate the heat transfer efficiency for the warm and
the cold air stream using the following equations:

Cold air stream

ϕ =
Tcold,out − Tcold,in

Twarm,in − Tcold,in

Warm air stream

ϕ =
Twarm,in − Twarm,out

Twarm,in − Tcold,in

Tutorial

180 8. Solar heating and cooling

Print the calculated heat exchanger efficiencies together with the condensed water mass
and the ice mass in one graph for the same boundary conditions as described above.

Solution

The x-axis shows the calculation step, the y-axis shows the heat exchanger efficiency
and the condensed water and ice mass in kg h−1. Line 1 and 2 show the calculated heat
transfer efficiency calculated for the cold and warm air stream. Line 3 and 4 refer to the
condensed water mass and the ice mass.

As visible from the graph, the heat exchanger efficiency of the cold air stream decreases
with decreasing condensed water mass from about 70 to 63 % and remains constant for
conditions without condensation. The increase in the heat exchanger efficiency with
increasing condensed water mass results from the condensing and latent enthalpy,
which is set free during the condensing and icing process. However, the heat exchanger
efficiency calculated form the warm air stream increases with decreasing condensed
water mass from about 48 to 63 %. This antithetic behavior results from the fact, that a
part of the condensing enthalpy is also transferred to the warm air stream which leads
to higher outlet temperatures and therefore to a lower heat exchanger efficiency.

... to be continued

Tutorial

9 :: INSEL GUI’s with VSEit

Sorry, this Module is not yet available.

10 :: INSEL in MATLAB and Simulink

Sorry, but this Module is not yet complete as INSEL 8.2 is released (April 2014). Two
things are important to know, hoewever.

First, if you intend to use the INSEL Renewable Energy Blockset in Simulink, copy the
file startup.m from resources\inselSimulink to your MATLAB installation’s
directory toolbox\local or append its content if you should have a startup.m file
there already.

Second, it is recommended to have a look at the examples in the
inselSimulink\examples\blocks directory. Since some of the examples use relative
paths to files make this directory the current directory in MATLAB’s commnd window
before you start.

Enjoy!

10.1 MATLAB

MATLAB is a high-level computer language, developed by the company The
Mathworks, Inc. during the 1980’s. The acronym MATLAB stands for matrix laboratory.
With its interactive environment the software can be used for algorithm development,
data visualisation, data analysis, and for numeric computation. It contains mathematical,
statistical, and engineering functions, likeq qq q Matrix manipulation and linear algebraq qq q Polynomials and interpolationq qq q Fourier analysis and filteringq qq q Data analysis and statisticsq qq q Optimization and numerical integrationq qq q Ordinary differential equations (ODEs)q qq q Partial differential equations (PDEs)q qq q Sparse matrix operations

Additional toolboxes provide specialized mathematical computing functions for areas
including signal processing, optimization, statistics, symbolic math, partial differential
equation solving, and curve fitting.

When the program is started the MATLAB default desktop opens, as shown in Figure .

Below a standard menu and toolbar four windows are shown:

10.1. MATLAB 183

Figure 10.1: Default MATLAB desktop layout.

q qq q The Current Folder window at the left side displays the content of the assigned
current folder. The current folder can be changed anytime from the pull-down
menu in the toolbar.q qq q The window displayed in the center is the Command Window. It shows a prompt
>> where MATLAB commands and functions can be executed interactively.q qq q The Workspace and Command History windows are displayed at the right side of
the MATLAB desktop.

There are several ways how to communicate with MATLAB. The most direct access is toCommand window
type in commands at the command promt. For example, typing magic(4) makes
MATLAB answer with

>> magic(4)
ans =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

If we wish to know how magic works, we can ask MATLAB for help:

>> help magic
MAGIC Magic square.

MAGIC(N) is an N-by-N matrix constructed from the integers

Tutorial

184 10. INSEL in MATLAB and Simulink

1 through N^2 with equal row, column, and diagonal sums.
Produces valid magic squares for all N > 0 except N = 2.

Reference page in Help browser
doc magic

The link doc magic leads directly to the online help browser for more information.

We could ask MATLAB to calculate the sums of the four colums:

>> sum(magic(4))
ans =

34 34 34 34

Beside the interactive computational environment MATLAB provides a powerfulM-files
programming language. Files that contain code in the MATLAB language are called
M-files. Two kinds of M-files can be written:q qq q Scripts operate on data in the workspace. They do not accept input arguments,

nor do they return output arguments.q qq q Functions do not access data in the workspace but internal variables. Data
exchange with the workspace is possible through input arguments and through
return output arguments.

A simple script which displays the hello-world string has only one line of code:hello.m

’Hello World!’

When the script is saved in a file named hello.m to the current folder, it can be executed
by just typing the name of the script at the command prompt:

>> hello
ans =
Hello World!

A simple function which sums up integers from one to a variable n and returns thesum12N.m
result in a variable named y is

function y = sum1toN(n)
y = sum(1:n)

The result is

>> sum1toN(10);
y =

55

It is possible to write functions for MATLAB in C or Fortran, too. The minimal C and
Fortran prototypes are

helloC.c

Tutorial

10.2. Simulink 185

#include ”mex.h”
void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[]) {

mexPrintf(”Hello C!\n”);
}

and

helloF.f

INCLUDE ”FINTRF.H”
SUBROUTINE MEXFUNCTION(NLHS,PLHS,NRHS,PRHS)
IMPLICIT NONE
INTEGER NLHS,NRHS
MWPOINTER PLHS(*),PRHS(*)
MEXPRINTF(’Hello Fortran!’)
RETURN
END

10.2 Simulink

A graphical MATLAB user interface named Simulink is available to model, simulate, and
analyse dynamic systems by building models as block diagrams. Simulink supports
linear and nonlinear systems, modeled in continuous time, sampled time, or a
combination of both.

The block libraries are fully customisable and blocksets are available for fixed-point
modeling, event-based modeling, physical modeling, control system design and analysis,
signal processing and communications, code generation, rapid prototyping and
hardware-in-the-loop simulation, verification and validation, and simulation graphics
and reporting, to mention just the main application fields.

In the context of this manual, it will be described, how blocks, which were originally
written for the simulation environment INSEL, are implemented in the Renewable
Energy blockset. The process involves two successive steps:

(1) Programming of a universal S-function, adapted to the definition of a general
INSEL block.

(2) Programming of Ruby scripts for the automated generation of masked S-function
implementations in a Simulink library.

10.2.1 S-functions

System functions or S-functions are computer language descriptions of Simulink blocks.
They can be written in M (the MATLAB language), C/C++, or Fortran. Code written in
one of the latter two languages must be compiled as MEX-files using the mex utility,
which is provided by MATLAB. When needed, these MEX-files are dynamically linked
into MATLAB.

Tutorial

186 10. INSEL in MATLAB and Simulink

S-functions require a special calling syntax so that the code can interact with Simulink’s
equation solvers. The form of S-functions is very general and can accomodate
continuous, discrete, and hybrid systems.

Once written and compiled, an S-function can be incorporated into a Simulink model.
Simlink provides an S-function block. It can be found in the User-Defined Functions
block library. Once dragged to the drawing area, a double-click opens the S-function
dialog box as shown in Figure

Figure 10.2: S-function dialog box.

The name of the S-function can be specified in the S-function name parameter. The
Simulink default name is system, the INSEL block S-function is named SinselBlock.
Parameters from the S-function parameters parameter will be passed directly to the
S-function. The S-function parameters can be MATLAB expressions or variables
separated by commas. The third S-function modules parameter applies only in the
context of the Real-Time-Workshop software, which is of no interest here.

If we save a file which just contains the default S-function block, Simulink writes a lot of
ASCII data to a file with extension mdl. Beside plenty of overhead the S-function
description is similar to:

Empty S-function

BlockParameterDefaults {
Block {

BlockType ”S-Function”
FunctionName ”system”
SFunctionModules ”’’”

Tutorial

10.2.1 S-functions 187

PortCounts ”[]”
SFunctionDeploymentMode off

}
}
System {

Name ”empty_s_function”
Location [867, 187, 1403, 476]
Open on
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor ”white”
PaperOrientation ”landscape”
PaperPositionMode ”auto”
PaperType ”A4”
PaperUnits ”centimeters”
TiledPaperMargins [1.270000, 1.270000, 1.270000, 1.270000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor ”100”
ReportName ”simulink-default.rpt”
SIDHighWatermark 1
Block {

BlockType ”S-Function”
Name ”S-Function”
SID 1
Ports [1, 1]
Position [260, 95, 320, 125]
EnableBusSupport off

}

We can identify some interesting keywords: The S-function is implemented as a “Block”
with attributes like BlockType (S-Function), its FunctionName (system) etc. Under
“System” we see some more keywords which deal with the location of the block in the
Simulink file, color definitions etc and finally, the implementation of the “Block”, being
of “Blocktype” S-Function named “S-Function”, having an SID 1 and one input and one
output port.

Since we wish to implement INSEL blocks similar to their representation in VSEit weMask editor
now look at some possibilities to improve the appearance of S-functions in Simulink. Via
a right-click on the S-function the Mask Editor presented in Figure can be opened.

Individual interfaces can be defined for each S-function via four tabbed panes of the
mask editor. The Icon & Ports pane enables the definition of a block icon, via the
Parameter pane mask dialog box parameter prompts and variable names for the
individual parameters can be defined. It is possible to define initialization commands for
dialog variables of the S-function via the Initialization pane and to provide some
documentation of the S-function via the Documentation pane.

In the Renewable Energy blockset, each INSEL block will get an own icon – exactly the
same icon as it appears in INSEL itself. The syntax is

Tutorial

188 10. INSEL in MATLAB and Simulink

Figure 10.3: S-function mask editor.

image(imread(’geng.png’,’png’,’BackgroundColor’, [1 1 1]))

The mask drawing command image is used to display an image on the icon of the
masked S-function. The MATLAB function imread reads an image from a graphics file,
geng.png in our example. The problem how Simulink finds the path to the icon files will
be discussed later (page 193). The string ’png’ specifies the format of the graphics file
by its standard file extension. MATLAB supports different file formats, we restrict
ourselves to portable network graphics. Finally, the background color of the icon’s pixels
can be defined through the BackgroundColor parameter by a three-element vector
whose values must be in the range between zero and one.

Figure shows an example for the parameter definition of an S-function. The text
specified in the Prompt column will be displayed in the mask dialog box. The variable
names follow the convention bpn, indicating that they are “block parameters” (a naming
convention in INSEL for numerical parameters), numbered from 1 to the total number of
bp’s. It is also possible to have “string parameters” named spn, accordingly.

Finally, in the Documentation pane three different strings can be specified, a Mask type
a Mask description and a Mask help string. The mask type string (“Hourly irradiance
data from monthly means”, for example) will be displayed in the mask’s margin. The
mask description (“The GENG block generates a series of hourly global radiation data
from monthly mean values.”, for example) will be displayed at the top of the mask.

Tutorial

10.2.1 S-functions 189

Figure 10.4: Parameter definition in the S-function mask editor. The example is taken from
the INSEL block library and represents the GENG block, which can be used to generate
meteorological data of solar irradiance in hourly resolution.

The mask help string can contain just a literal string or HTML text, and it is possible to
specify commands which enable the link to a URL passed to the default web browser by
Simulink. Another option is offered through the eval command, which is then passed to
MATLAB and evaluated. In INSEL the documentation is completely based on PDF files.
An executable named inselHelp accepts an INSEL block name as parameter and opens
the block reference at the corresponding page. Hence, all INSEL-related S-function
masks use the string

eval(’!inselHelp BN’))

inselHelp moechte auch gefunden werden (Windows Path)! Dummerweise fuehrt
MATLAB zwar einen eigenen search path, ueberlaesst das finden von executables dann
aber doch offenbar Windows selbst.

where BN stands for the individual block name, GENG, for example. The exclamation
point preceeding the executable name is a MATLAB convention which initiates a shell
escape function so that the command is directly performed by the operating system.
Figure shows the open S-function mask for the INSEL block GENG with the concrete
implementation as described above.

GENG reference

Tutorial

190 10. INSEL in MATLAB and Simulink

Figure 10.5: S-function mask of the INSEL block GENG.

Block {
BlockType ”S-Function”
Name ”Hourly irradiance data from monthly means”
SID_unknown
Ports [5, 1]
Position_unknown
FunctionName ”SinselBlock”
Parameters ”5 1 ’GENG’ bp1 bp2 bp3 bp4 bp5 bp6 bp7 bp8”
EnableBusSupport off
MaskType ”Hourly irradiance data from monthly means”
MaskDescription ”The GENG block generates a series of hourly glob”

”al radiation data from monthly mean values.”
MaskHelp ”eval(’!inselHelp GENG’)”
MaskPromptString ”Latitude|Longitude|Time zone|Gordon Reddy varian”

”ce factor|Year-to-year variability|Autocorrelati”
”on coefficient lag one|Autocorrelation coefficie”
”nt lag two|Initialisation of random number gener”
”ator”

MaskStyleString ”edit,edit,edit,edit,edit,edit,edit,edit”
MaskTunableValueString ”on,on,on,on,on,on,on,on”
MaskEnableString ”on,on,on,on,on,on,on,on”
MaskVisibilityString ”on,on,on,on,on,on,on,on”
MaskToolTipString ”on,on,on,on,on,on,on,on”
MaskVariables ”bp1=@1;bp2=@2;bp3=@3;bp4=@4;bp5=@5;bp6=@6;bp7=@7”

Tutorial

10.2.1 S-functions 191

”;bp8=@8;”
MaskDisplay ”image(imread(’geng.png’,’png’,’BackgroundColor’, [1 1 1]))”
MaskIconFrame off
MaskIconOpaque on
MaskIconRotate ”none”
MaskPortRotate ”default”
MaskIconUnits ”pixels”
MaskValueString ”48.77|-9.18|23|1|0|0.3|0.171|4712”

}

GENG S-function

BlockParameterDefaults {
}
System {

Name ”GENG_S_function”
Location [924, 156, 1460, 445]
Open on
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor ”white”
PaperOrientation ”landscape”
PaperPositionMode ”auto”
PaperType ”A4”
PaperUnits ”centimeters”
TiledPaperMargins [1.270000, 1.270000, 1.270000, 1.270000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor ”100”
ReportName ”simulink-default.rpt”
SIDHighWatermark 1
Block {

BlockType Reference
Name ”Hourly irradiance data from monthly means”
SID 1
Ports [5, 1]
Position [235, 85, 285, 135]
LibraryVersion ”1.8”
SourceBlock ”INSEL/Meteorology/Solar Radiation/Hourly (...) means”
SourceType ”Hourly irradiance data from monthly means”
bp1 ”48.77”
bp2 ”-9.18”
bp3 ”23”
bp4 ”1”
bp5 ”0”
bp6 ”0.3”
bp7 ”0.171”
bp8 ”4712”

}
}

}

Please notice that we have skipped the description of the initialization of the
parameters. soll das noch nachgeholt werden?

Tutorial

192 10. INSEL in MATLAB and Simulink

As mentioned before, a click on the Help button opens the INSEL block reference
manual page as shown in Figure

Figure 10.6: Block reference manual page of the INSEL block GENG (extract).

So, this feels quite like INSEL already. Let us now look at the implementation of the
S-function itself.

10.3 The S-function SinselBlock

A look under the mask of the GENG block implementation shows the use of the
SinselBlock S-function – see Figure .

The parameters of the S-function SinselBlock fix the number of block inputs (five), block
outputs (one), the name of the INSEL block (GENG) and the parameter list named bp1
. . . bp8, as mentioned above.

10.4 Getting Started

10.4.1 Installer

Tutorial

10.4.1 Installer 193

Figure 10.7: S-function dialog box for the GENG block implementation.

We want to integrate the INSEL Renewable Energy blockset with the Simulink Library
Browser in such a way that users are allowed to access the blockset in the same way as
they access MathWorks products. Therefore, we should

(1) Use the addpath command as described in Using MATLAB: Development
Environment: Search Path of the Help Browser

(2) Create a Contents.m file so that MATLAB displays information about INSEL
when help INSEL is entered at the command prompt and that it is listed in the
response to ver.

(3) Create an slblocks.m file to define how the blockset should appear in the
Simulink library browser.

MATLAB does not use the Windows environment variable %PATH% to find files but aAd (1)
special concept, named search path. The search path is a subset of all the folders in the
file system. MATLAB can access all files in the folders on the search path.

It is not possible to specify file names relative to a directory in the search path, i. e., if
matlabroot/mydir is in the search path and sub is a subdirectory of mydir then files
located in sub cannot be addressed via sub/etc.

MATLAB provides several mechanisms so that users can modify the search path. Most
of them are available in the MATLAB command window, but not available
programmatically. This means if we wish to inform MATLAB about a new INSEL
installation the installer can write a file named startup.m with information about new

Tutorial

194 10. INSEL in MATLAB and Simulink

search path directories. Here comes an example which fulfills the needs of INSEL:
startup.m

path(’C:\Program Files\insel 8\resources’,path)
path(’C:\Program Files\insel 8\resources\icons’,path)
path(’C:\Program Files\insel 8\resources\simulink’,path)

One possibility to place it in MATLAB’s search path is to copy the file to
matlabroot/toolbox/local. It is however unclear, whether this is the best solution.
When MATLAB is replaced by a new installation, the file will be lost and MATLAB and
Simulink can no longer access the INSEL blockset.

Suchreihenfolge: 1. matlab search path, 2. in toolbox/local

pfad zu icons in createSinselBlocks auf angepasst (werden jetzt in resources/icons
gefunden)

C:\Program Files\insel 8\resources muss im Pfad stehen, damit inselHelp.exe,
SinselBlock mex32 etc gefunden wird. Alternativ windows/system???

blockDoc.dat – wo soll das ding liegen und wie gefunden werden? Antwort: im INSEL
installationsverzeichnis unter resources. Gefunden wird die Datei von bn2fn mittels der
inselroot Funktion, die in inselTools.dll liegt.

Write Contents.m in C:\Program Files\insel 8\resources with contentAd (2)

% INSEL
% Version 8.2 05-Aug-2013

When ver is typed in MATLAB’s Command Window it displays

--
MATLAB Version 7.9.0.529 (R2009b)
MATLAB License Number: XXXXXX
Operating System: Microsoft Windows Vista Version 6.1 (Build 7600)
Java VM Version: Java 1.6.0_12-b04 (...) Java HotSpot(TM) Client VM mixed mode
--
MATLAB Version 7.9 (R2009b)
Simulink Version 7.4 (R2009b)
INSEL Version 8.2

or something similar.

Write slblocks.m in C:\Program Files\insel 8\resources with contentAd (3)

function blkStruct = slblocks
%SLBLOCKS Defines the block library for a specific Toolbox or Blockset.
% SLBLOCKS returns information about a Blockset to Simulink. The
% information returned is in the form of a BlocksetStruct with the
% following fields:
%
% Name Name of the Blockset in the Simulink block library

Tutorial

10.4.1 Installer 195

% Blocksets & Toolboxes subsystem.
% OpenFcn MATLAB expression (function) to call when you
% double-click on the block in the Blocksets & Toolboxes
% subsystem.
% MaskDisplay Optional field that specifies the Mask Display commands
% to use for the block in the Blocksets & Toolboxes
% subsystem.
% Browser Array of Simulink Library Browser structures, described
% below.
%
% The Simulink Library Browser needs to know which libraries in your
% Blockset it should show, and what names to give them. To provide
% this information, define an array of Browser data structures with one
% array element for each library to display in the Simulink Library
% Browser. Each array element has two fields:
%
% Library File name of the library (mdl-file) to include in the
% Library Browser.
% Name Name displayed for the library in the Library Browser
% window. Note that the Name is not required to be the
% same as the mdl-file name.
%
% Example:
%
% %
% % Define the BlocksetStruct for the Simulink block libraries
% % Only simulink_extras shows up in Blocksets & Toolboxes
% %
% blkStruct.Name = [’Simulink’ sprintf(’\n’ Extras];
% blkStruct.OpenFcn = simulink_extras;
% blkStruct.MaskDisplay = disp(’Simulink\nExtras’);
%
% %
% % Both simulink3 and simulink_extras show up in the Library Browser.
% %
% blkStruct.Browser(1).Library = ’simulink3’;
% blkStruct.Browser(1).Name = ’Simulink’;
% blkStruct.Browser(2).Library = ’simulink_extras’;
% blkStruct.Browser(2).Name = ’Simulink Extras’;
%
% See also FINDBLIB, LIBBROWSE.

% Copyright 1990-2001 The MathWorks, Inc.
% $Revision: 1.17 $

%
% Name of the subsystem which will show up in the Simulink Blocksets
% and Toolboxes subsystem.
%
blkStruct.Name = [’Simulink’ sprintf(’\n’) ’Extras’];

%
% The function that will be called when the user double-clicks on
% this icon.

Tutorial

196 10. INSEL in MATLAB and Simulink

%
blkStruct.OpenFcn = ’simulink_extras’;

%
% The argument to be set as the Mask Display for the subsystem. You
% may comment this line out if no specific mask is desired.
% Example: blkStruct.MaskDisplay = ’plot([0:2*pi],sin([0:2*pi]));’;
% No display for Simulink Extras.
%
blkStruct.MaskDisplay = ’’;

%
% Define the Browser structure array, the first element contains the
% information for the Simulink block library and the second for the
% Simulink Extras block library.
%
Browser(1).Library = ’INSEL’;
Browser(1).Name = ’INSEL Renewable Energy’;
Browser(1).IsFlat = 0;% Is this library ”flat” (i.e. no subsystems)?

blkStruct.Browser = Browser;

% End of slblocks

10.4.2 Link vs. simple copy

(verbatim copy of Simulink documentation): You can break the link between a referenceBreaking a link to a
library block block and its library block to cause the reference block to become a simple copy of the

library block, unlinked to the library block. Changes to the library block no longer affect
the block. Breaking links to library blocks may enable you to transport a Masked
Subsystem Example model as a standalone model, without the libraries.

To break the link between a reference block and its library block, first disable the link.
Then select the block and choose Break Link from the Link Options menu. You can also
break the link between a reference block and its library block from the command line by
changing the value of the LinkStatus parameter to ’none’ using this command:

set_param(’refblock’, ’LinkStatus’, ’none’)

You can also break links to library blocks when saving the model, by supplying
arguments to the save_system command. See save_system in the Simulink reference
documentation.

Breaking library links in a model does not guarantee that you can run the model
standalone, especially if the model includes blocks from third-party libraries or optional
Simulink blocksets. It is possible that a library block invokes functions supplied with the
library and hence can run only if the library is installed on the system running the
model. Further, breaking a link can cause a model to fail when you install a new version
of the library on a system. For example, suppose a block invokes a function that is
supplied with the library. Now suppose that a new version of the library eliminates the

Tutorial

10.4.3 Enumerations and operation modes 197

function. Running a model with an unlinked copy of the block results in invocation of a
now nonexistent function, causing the simulation to fail. To avoid such problems, you
should generally avoid breaking links to third-party libraries and optional Simulink
blocksets.

If Simulink is unable to find either the library block or the source library on yourFixing unresolved
library links MATLAB path when it attempts to update the reference block, the link becomes

unresolved. Simulink issues an error message and displays these blocks using red dashed
lines. The error message is

Failed to find block “source-block-name” in library “source-library-name” referenced by
block “reference-block-path”.

The unresolved reference block appears like this (colored red).

To fix a bad link, you must do one of the following:q qq q Delete the unlinked reference block and copy the library block back into your
model.q qq q Add the directory that contains the required library to the MATLAB path and
select Update Diagram from the Edit menu.q qq q Double-click the unlinked reference block to open its dialog box (see the Bad Link
block reference page). On the dialog box that appears, correct the pathname in the
Source block field and click OK.

10.4.3 Enumerations and operation modes

I don’t know how often I have thought about shooting the guys who had the idea, that
counting indexes should start at zero instead of one. I have never seen a child starting to
learn to count fingers with a closed fist representing zero, but showing the thumb (okay
– the Japanese start counting with their pinkie). Everybody – except those C guys -
wants to have the first item as one and not as zero.

As a very early idea, INSEL provided the option to have similar designed blocks
organised in one subroutine and distinguish them by the operation mode parameter – of
course, starting with one for the first operation mode, two for the second, and so on. A
similar case occurs with a parameter, which enumerates diverse options, like option one,
two, and so on. So parameter definitions of INSEL blocks with enumeration-type
parameters started with one, followed by two, and so forth.

Then in the mid-90’s HP VEE came across INSEL, providing pull-down objects to nicely
specify enum objects in a graphical environment. So, the “Default” case was invented in
INSEL 5, introducing some “artificial” meaning of the enum-value zero and leaving the
logics of enum-parameter interpretation as it was in INSEL before.

Tutorial

198 10. INSEL in MATLAB and Simulink

Then came VSEit, the great graphical Java interface for INSEL 8. Since VSEit uses the
convention to index enum objects from zero to n, it was decided to follow the
standard-C convention and – for God’s sake – start to count enum objects at ozero.

Finally, in 2011 we started to deploy INSEL blocks with MATLAB & Simulink. The
one-vs.-zero horror returned, when we found out that Simulink indicates enum objects
from one to n. Well . . .

Since some INSEL blocks use enum-object parameters – and since we didn’t want to
waste an additional IP parameter on this, we decided to incorporate the “zero-vs.-one”
difference in “overloading” the third operation-mode paramter IP(3) – or IP[2], for the
start-at-zero fans. Hence, when the operation mode is positive, any enum parameters
are interpreted between one and n. If the operation mode is negative the enum
parameters are interpreted to start at zero.

Sorry for the mess.

Tutorial

PART III :: Advanced concepts

11 :: INSEL without GUI

11.1 Running .insel files

We hope, that it has been wonderful to see how the completely graphical approach to
programming with graphical programming elements like INSEL blocks and their
interconnections works. When you “look behind the stages” it doesn’t require much
information to interpret a user-written block diagram simulation application. By
generating a graphical block diagram, let us ask and answer the question, what actually
happens and which kind of information is provided to the simulation environment.

In block diagram based simulation environments like INSEL the information consists
basically only of two information types – the block diagram structure and the used
parameters.

As an alternative to graphical programming in VSEit, you can also write INSEL models
in a text editor. In order to write an INSEL simulation program in its ASCII
representation you must use a text editor like Windows Notepad or Kedit, for example.
You then need to know the syntax of the INSEL programming language, which is very
simple and consists of only few keywords.

In a book of Kerninghan and Ritchie on programming in C the now famous Hello, worldHello, world!
example was given, a C program which displays the string “Hello, world!” on the
computer’s display. If you want to solve this task with INSEL, you need a block which is
able to display information on the screen. One of these blocks is the SCREEN block. It
has an optional parameter for the format of the displayed information.

Please notice that two different types of information have to be provided for the
SCREEN block and – more general – each INSEL application:

First, the model structure fixes which blocks are used in a certain application and howStructure and
parameters they are interconnected. Second, the model parameters fix what the current values of

the block parameters are.

In this example, model structure and parameters are extremely simple, because all wehello.insel
need is one single block. These two statements do the job:

s 1 screen
p 1 ’(’’Hello, world!’’)’

The first record starts with an s which is an INSEL keyword (short for structure). It isS or s statement
followed by an arbitrary block number (which has to be unique for every block that is
used in a given INSEL program) and the block’s name, SCREEN in this case. Please
observe that the entries are separated by a delimiter, one blank (space character) in this
case. Usually, a list of block inputs follows after the block name, but in this example no
inputs need to be connected.

The second record provides the necessary parameter information starting with theP or p statement

202 11. INSEL without GUI

keyword p (short for parameter). In order to enable INSEL to uniquely identify the given
values with a certain block, the above mentioned user-defined block number follows the
p-keyword.

The parameter list comes next, in this case the ’(’’Hello, world!’’)’ string. Because
the format parameter is a string, it has to be embedded in quotes. Concerning the string
value pay attention to use two single quotes ’’ and not one combined ”. The
parentheses in the string follow the Fortran format conventions.

Now you are ready to save the information under a file name like hello.insel, for
example. It is necessary to use the .insel extension for INSEL source code files. The
next step is to tell INSEL that you like to execute the hello.insel application.

There are two options how the model can be executed: either from the VSEit interfaceExecute
hello.insel via File > Open .insel File... and the Run button, or from a DOS box via

insel hello.insel. The second option requires that insel.exe is in the current
%PATH% and that hello.insel is available in the current directory.

Please open an INSEL Terminal from the tool bar and try it.Exercise 11.1

Solution

As a second more applied example with inputs and outputs we now write a .inselPhotovoltaics
model which calculates the power output of a photovoltaic module as a function of the
voltage. We start with the timer block DO, which outputs the voltage from 0 to 40 V in
steps of 0.01 V to the PVI block.

s 10 do
p 10 0 % Initial value

40 % Final value
0.01 % Increment

Please observe that comments can be used in .insel files: everything starting with aComments
% symbol to the end of the record is gobbled by the INSEL compiler.

Tutorial

11.1. Running .insel files 203

The PVI block uses the first output from the DO block as an input, i. e., the output from
block number 10. This first output is written as 10.1, the second output would be 10.2
etc. The PVI block also needs the irradiance and module temperature as inputs. To keep
the model simple, irradiance and temperature are set constant. Hence, we define two
different constant blocks.

s 11 const
p 11 1000.0 % Irradiance in W/m2
s 12 const
p 12 25.0 % Module temperature in degrees celsius

s 20 pvi 10.1 11.1 12.1

The next block is the multiplication block MUL, where the voltage (output from the DO
block number 10) and the current (output from the PVI block number 20) are multiplied.

s 30 mul 10.1 20.1

Finally, the result of the MUL block – the DC power of the PV module – is plotted
against the voltage.

s 40 plot 10.1 30.1

What is still missing, are the parameters for the PVI block. INSEL provides a data base
for several thousand modules that are or have been on the world market. In the data
directory you find a file named pvModules.dat which contains a list of modules which
are in the data base. The first few records of this file look similar to:

pvModules.dat
PRODUCER 2009 PVTYPE pvxxxxxx Pnenn

3S Swiss Solar Systems AG Fassadenmodul 001531 178.0
3S Swiss Solar Systems AG MegaSlate-Indachmodul mono 008917 148.0
3S Swiss Solar Systems AG MegaSlate-Indachmodul poly 001189 136.0
Aavid Thermalloy ASMC-150M 009458 150.0
Aavid Thermalloy ASMC-175M 009459 175.0
Aavid Thermalloy ASMC-180M 009460 180.0
Aavid Thermalloy ASMC-190M 009461 190.0
Advent Solar, Inc. Advent 210 005405 210.0
Advent Solar, Inc. Advent 215 005406 215.0

The records should be self explaining, except the pvxxxxxx column. The parameters for
the modules (or more general, all parameter sets in the INSEL data base) are saved in
files with the extension .bp which is short for block parameters. The file name in case of
the PV parameters is pvxxxxxx with the place holder xxxxxx. Column pvxxxxxx
provides this placeholder. For example, if you want to simulate the Advent 210 module
of Advent Solar, Inc., the parameters are provided in file pv005405.bp in the data\bp
directory of your INSEL installation. This is the content of file pv005405.bp:

pv005405.bp

Tutorial

204 11. INSEL without GUI

% File name pv005405.bp
% Photon ID 005623
% Module Advent 210
% Manufacturer Advent Solar, Inc.
% Cell type poly

% Mode must be set externally
60 % Number of cells in series N_s per module
1 % Number of cells in parallel N_p per module
1 % Number of modules in series M_s
1 % Number of modules in parallel M_p
0.0275 % Cell area A_c (m^2)
1.663 % Module area A_m (m^2)

% Electrical parameters
1.12 % Band gap (eV)
0.2542 % Short-circuit current parameter C_0 (V^-1)
0.153E-03 % Isc temperature coefficient C_1 (V^-1 K-^1)
0.169663E+05 % Shockley saturation parameter C_01 (A m-2 K^-3)
0 % Recombination saturation parameter C_02 (A m-2 K^-5/2)
0.00012389 % Series resistance r_s (Ohm m^2)
0.03129369 % Parallel resistance r_p (Ohm m^2)
1.0165366 % Shockley diode ideality factor alpha
2 % Recombination diode quality beta
0 % Bishop parameter-1
0 % Bishop parameter-2
0 % Bishop parameter-3
3.0 % Module tolerance plus
-3.0 % Module tolerance minus

% Thermal parameters
1.680 % Characteristic module length l_m (m)
22.700 % Module mass m_m (kg)
0.70 % Default absorption coefficient a
0.85 % Default emission factor epsilon

900.0 % Default specific heat of a module C_mod (J kg^-1 K^-1)
47.0 % Nominal operating cell temperature NOCT (degrees C)
25 % Intial value of cell temperature (degrees C)

% Numerical parameters (optional)
1E-5 % Error tolerance of voltage of single cell (V)

100 % Maximal number of iterations to solve I/V-equation

When you look at the file and into the documentation of the PVI block, you see that the
temperature mode is not part of the .bp file but must be set as an extra parameter.

Rather than copying the whole file into your .insel file the include statement can beI or i statement
used. Its syntax is simply

i ’file name’

When the INSEL compiler finds this statement in a .insel file it replaces the statement
with a verbatim copy of the file content.

Tutorial

11.1. Running .insel files 205

In conclusion, the complete program for calculating the DC power of a PV module as a
function of voltage looks like this:

s 10 do
p 10 0 % Initial value

40 % Final value
0.01 % Increment

s 11 const
p 11 1000.0 % Irradiance in W/m2
s 12 const
p 12 25.0 % Module temperature in degree celsius

s 20 pvi 10.1 11.1 12.1
p 20 0 % Mode

i ’c:\Program Files\insel~8\data\bp\pv005405.bp’
s 30 mul 10 20.1

s 40 plot 10 30

Please observe the syntax used by the PLOT block: when no output number is specified
this defaults to output number one.

Save the file under any name, for example pv.insel, and run it.Exercise 11.2

Solution

One special feature of graphical programming languages like INSEL is that the order ofArbitrary order of
statements statements in the source code is completely free. We could shuffle the model into any

arbitrary order, like

s 40 plot 10 30
p 10 0 % Initial value

25 % Final value

Tutorial

206 11. INSEL without GUI

0.01 % Increment
s 11 const
s 12 const

s 20 pvi 10.1 11.1 12.1
p 20 0 % Mode

i ’c:\Program Files\insel~8\data\bp\pv1129.bp’
s 30 mul 10 20.1

s 10 do
p 11 1000.0 % Irradiance in W/m2
p 12 25.0 % Module temperature in degree celsius

In a conventional programming language it would be impossible to use variables like the
PLOT block’s inputs from blocks 10 and 30 before the values are defined. This makes it
possible – and you probably used this feature without notice – to construct the VSEit
applications in any order, delete VSEit objects, add new ones etc. By the way, the VSEit
objects appear in the .vseit file in the order in which you placed them on the screen.

One last statement completes the set of only four statements in total – INSEL is perhapsC or c statement
the simplest programming language in the world with only four statements (the earlier
versions had even only two: s and p). The c statement can be used to define constants by
name and value. The syntax is

c name value

The variable name (no enclosing quotes) defines the name of the constant, value
specifies its value, which can be either a valid numerical or string parameter with the
usual INSEL conventions (i. e., strings enclosed by quotes, numerical values not enclosed
by quotes). Variable names can be constructed from the characters [A-Z][a-z][0-9]
but have to start with an alphabetic character.

In addition, the special character # is allowed in variable names. Its use should however
be restricted to developers of “.include/.insel” applications. What is this?

11.2 .include/.insel applications

Program development (not only) in the field of renewable energy simulation can be
classified into two different aspects: (i) the calculation model formulation and (ii)
program parts which provide convenient user interfaces. In many cases both program
parts are combined into one software project.

The c- and i-statements enable a concept which we call “.include/.insel”
applications. With this method INSEL provides a programming environment for the
experienced INSEL user and C/C++ programmer (or any other high-end programming
language software developer), where both calculation kernel and user interface can be
written completely independent. The results are applications which look like common

Tutorial

11.2. .include/.insel applications 207

Windows applications, but which give the experienced user of such a program access to
the modeling level, without having to recompile the user interface code.

To understand this in more detail let us use the previous example, in which the DC
power of a PV module was calculated. In this example we had defined two constants for
the irradiance and module temperature, blocks 11 and 20, respectively. The values
1000 W/m2 and 25 ◦C were inspired by the standard test conditions for PV modules.
Additional parameters were the voltage range and increment and a .bp file name for a
specific PV module.

We have modified the example so that it can be used as a “laboratory flasher” which canPV module flasher
be used with a convenient user interface for any real (simulated) PV module.

The model is split up into two files. The first one contains only c-statements:flasher.include
% Include file for the definition of the free parameters
c #PVincludeFile ’c:\Program Files\insel~8\data\bp\pv005405.bp’
c #InitialValue 0
c #FinalValue 40
c #Increment 0.01

The second file contains the model which makes use of the variables defined in theflasher.insel
include file.

% INSEL file to plot the STC I-V curve
i ’flasher.include’
s 10 do
p 10 #InitialValue

#FinalValue
#Increment

s 11 const
p 11 1000.0 % Irradiance in W/m2
s 12 const
p 12 25.0 % Module temperature in degree celsius

s 20 pvi 10.1 11.1 12.1
p 20 0 % Mode

i #PVincludeFile

s 40 plot 10 20

In order to adapt the model to any given PV module – or in other words, to flash a
certain module in the laboratory and create an I-V curve protocol – only the values in
the include file must be changed. There is no need to touch the .insel file.

In consequence this means that the user interface needs to manipulate the .include file
only. Once a user of such an interface has entered the parameters the interface tool can
execute the complete model by calling the inselEngine. This is what was meant when we
said that interface and calculation model are completely disjoint.

Tutorial

208 11. INSEL without GUI

The details for programming of C++ interfaces is beyond the scope of this Tutorial. This
screenshot shows a possible implementaion of the flasher example.

Tutorial

11.3. Parameter variations with Ruby scripts 209

11.3 Parameter variations with Ruby scripts

Core component: File lib/insel.rb
require File.join(File.dirname(__FILE__), ’core_exts’)
require ’fileutils’

module Insel
DEFINE THE RIGHT PATH FOR YOUR SYSTEM
It could be
InselPath = ”/Users/juergenschumacher/Documents/insel/VSEit/”
#InselPath=File.join(’/opt’, ’insel8’, ’resources’)

This class launches insel.exe with a temporary file containing insel_content
It parses insel output, and returns the results as Float, Array or Array of Arrays
insel_content needs to be defined separately, either with a Block or with a Template
class Model

Parses insel output and return the results.
Results are supposed to be between ”Running insel” and ”Normal end of run”
A single value gets returned as Float
Multiple lines with single value get returned as an Array
One line with multiple values get returned as an Array
Multiple lines with multiple values get returned as an Array of Arrays
def results

rr = raw_results
if rr =~/Running insel [\d\w \.]+ ...\s+([^*]*)Normal end of run/m then

$1.split(/\n/).map{|line|
floats = line.split(/\s+/).reject{|f|f.empty?}.map{|r| r.to_f}
floats.extract_if_singleton

}.extract_if_singleton
else

raise ”problem with INSEL #{rr}”
end

end

Returns the r-th output
def [](r)

@outputs_number=r+1
results[r]

end

private

Writes a temporary .insel file with insel_content
Runs insel
Returns the raw output coming from insel
Deletes the temporary .insel file
def raw_results

temp_file = File.expand_path(File.join(File.dirname(__FILE__), ’test.insel’))
FileUtils.cd(InselPath){

File.open(temp_file, ’w+’){|f|
f.write insel_content

}
@raw_results=%x(./insel #{temp_file})

Tutorial

210 11. INSEL without GUI

FileUtils.rm temp_file
}
@raw_results

end
end

This class is not exactly an insel Block, but an insel Model with one interesting block
and the needed CONST blocks for input and SCREEN block for output.
The main job of this class is to define insel_content. For example, for Block.sum(6,4) :
s 1 CONST
p 1
6
s 2 CONST
p 2
4
s 3 sum 1.1 2.1
s 4 SCREEN 3.1
p 4
’(6E15.7)’

class Block < Model
attr_reader :name, :parameters, :inputs

def initialize(name, parameters, *inputs)
@name, @parameters, @inputs = name, parameters, inputs
@outputs_number=1

end

Method to access results from a block with :
Block.launch(:do, [1,10,1]).inspect
def self.launch(name, parameters, *inputs)

new(name, parameters, *inputs).results
end

Shortcut to access results from a block without parameters :
Block.sum(6,4)
def self.method_missing(sim, *inputs)

launch(sim, [], *inputs)
end

private

Defines the model that will be fed to insel
Writes the needed CONST blocks, then the interesting block, then SCREEN block
def insel_content

tmp_content=[constants, s_part, p_part , screen].compact.join(”\n”)
tmp_content.gsub(/i ’(.*?)’/){File.read($1)}

end

Writes a CONST block for every input
def constants

@i=0
@c_ids = []

Tutorial

11.3. Parameter variations with Ruby scripts 211

inputs.map{|input|
@c_ids << ”#{@i+=1}.1 ”
”s #{@i} CONST\np #{@i}\n\t#{input}”

}
end

Defines the links between the block and its inputs
def s_part

”s #{@i+=1} #{@name} #{@c_ids}”
end

Defines the screen block to show the output
The outputs_number is 1 by default, but can be defined to be more :
Block.new(:mtm,[’Strasbourg’], 12)[2]
def screen

input_ids = (1..@outputs_number).map{|o|
”#{@i}.#{o}”

}.join(” ”)
”s #{@i+1} SCREEN #{input_ids}\np #{@i+1}\n\t’(6E15.7)’”

end

Writes the parameters for the block, if needed
def p_part

ps = parameters.map{|p|
case p

when String : ”’#{p}’”
else p
end

}
[”p #{@i}”, ps].join(”\n\t”) unless parameters.empty?

end
end

Reads a template file present in ’templates’ folder with template_name.insel name
Replaces every placeholder with specified values and uses it as insel_content
#
For example, templates/a_times_b.insel :
########################
s 1 MUL 3.1 2.1
s 2 CONST
p 2
a
s 3 CONST
p 3
b
s 4 SCREEN 1.1
p 4
’*’
#
#######################
#
#
Template.a_times_b(:a=> 5, :b=>3)
=> 15.0

Tutorial

212 11. INSEL without GUI

class Template < Model
attr_reader :name, :parameters, :filename

def initialize(name, parameters)
@name, @parameters = name.to_s, parameters.merge(:bp_folder => File.join(InselPath, ’data’, ’bp’))
@filename = File.expand_path(File.join(File.dirname(__FILE__), ’..’, ’templates’, @name+’.insel’))

end

def self.method_missing(sim, *parameters)
new(sim, *parameters).results

end

private

Replaces every placeholder with specified values and uses it as insel_content
def insel_content

tmp_content=File.read(@filename)
parameters.each{|k,v|

tmp_content.gsub!(”$#{k}$”,v.to_s)
}
tmp_content.gsub(/i ’(.*?)’/){File.read($1)}

end
end

end

Approach One: Interactive Ruby Interpreter: Start irb in Terminal

Voraussetzung: ”insel” executable muss im Pfad liegen!

irb
>> require ’lib/insel’
>> Insel::Block.pi
=> 3.141593
>> exit

or using namespace Insel
irb
>> require ’lib/insel’
>> include Insel
>> Block.pi
=> 3.141593
>> exit

Approach Two: Write Ruby file and run ruby ”filename”

Needed library in order to call Insel blocks and templates from Ruby
Loads the content of lib/insel.rb
require ’lib/insel’

Avoids writing ’Insel::Block’ instead of just ’Block’
include Insel

Tutorial

11.4. Optimization with GenOpt 213

Returns the value of Pi block
Block.block_name
puts Block.pi

Calculates sin((6+4)*9) = sin (90) = 1
Block.block_name(input1,input2,....,inputN)
puts Block.sin(Block.mul(Block.sum(6,4), 9))

Creates an Array from 1 to 10
Block.launch(:block_name, [parameter1,parameter2,...,parameterM])
puts Block.launch(:do, [1,10,1]).inspect

Gets average temperature in december in Strasbourg [C]
Block.new(:block_name, [parameter1,parameter2,...,parameterM],input1, input2,, inputN)[which_output]
puts Block.new(:mtm,[’Strasbourg’], 12)[2]

Calculates 5*7 with a template
Template.template_name(:variable1 => value1, ..., :variableN => valueN)
puts Template.a_times_b(:a => 5, :b => 7)

Fill factor in % of SunPower SPR-305-WHT-I by STC [%]
NOTE: The pv_id could be different on other systems
puts Template.fill_factor(:pv_id => ’003281’, :temperature=> 25, :irradiance => 1000)*100

Isc of SunPower SPR-305-WHT-I by STC [A]
puts Template.i_sc(:pv_id => ’003281’, :temperature=> 25, :irradiance => 1000)

Uoc of SunPower SPR-305-WHT-I by STC [A]
puts Template.u_oc(:pv_id => ’003281’, :temperature=> 25, :irradiance => 1000)

[1,2,3,4,5,6,7,8,9,10].each{|e| puts Insel::Template.a_times_b(:a=> e,:b=>5)}

(-25..75).step(25){|ta| puts Template.fill_factor(:pv_id=> ’003281’,:temperature => ta, :irradiance => 1000)}

11.4 Optimization with GenOpt

Tutorial

214 11. INSEL without GUI

11.5 Direct calls of INSEL blocks

The open DLL concept of INSEL allows programmers to interact with exported
functions of INSEL DLLs. In principle, there are two different methods how the
interaction can be implemented.

As described earlier in Module 12, all INSEL blocks have a unique interface, which is

SUBROUTINE name(IN,OUT,IP,RP,DP,BP,SP)

in Fortran, or

#include ”MyTypes.h”
extern ”C” void name(REAL* IN, REAL* OUT, INT* IP, REAL* RP,

DOUBLE* DP, REAL* BP, STRARRAY SP, unsigned int SPlen = FOR_STRLEN)

in C/C++. The include file MyTypes.h contains the definition of the data types REAL* etc.
as shown in Module 12, page ??.

The first method to access INSEL blocks programmatically is to directly call the
subroutine or function. The second method makes use of the wrapper class
CinselBlock which is exported by inselDi.dll.

We start with the first approach. Although it is slightly more complicated it has the
advantage of showing the gift – and not just the wrapping paper.

In any case, the calling program has to care for the allocation of the block specificIdentification call
memory, i. e., in particular the size of the input array IN, the output array OUT, the
internal memory arrays IP, RP, and DP, the numerical block parameters BP, and the
string parameters SP. The blocks memory requirements can be found by an Idenfication
call, i. e., with IP(2) = -1 in Fortran or IP[1] = -1 in C/C++. The routine returns the
information:

IP(1) = OPM
IP(2) = INMIN
IP(3) = IPS
IP(4) = BPMIN
IP(5) = SPMIN
IP(6) = SPS
IP(7) = GROUP
IP(8) = RPS
IP(9) = DPS
IP(10) = BPS
SP = BNAMES
IN = FLOAT(INS)
OUT = FLOAT(OUTS)

in Fortran notation – see Module 12, page 300f for the meaning of the variables. Most
important, recall that if OPM is greater than one, the routine contains more than one
INSEL block and it depends on the value of OPM which block is executed by a call.

Write a Fortran or C program, and find out which INSEL blocks are implemented inExercise 11.3

Tutorial

11.5. Direct calls of INSEL blocks 215

SUBROUTINE fb0043, for instance, and how much memory is required for the arrays.

All INSEL blocks are usually exported in C calling convention. The subroutine fb0043 isHints
exported from inselFB.dll. If you link the DLL statically, link your program with
inselFB.lib. A quick-and-dirty solution could use a print,* Fortran- or a printf C
statement. Making use of the INSEL message system as explained in Module 12,
page 296ff would be the much better solution in a professional environment.

The Fortran solution based on Microsoft Fortran PowerStation 4.0 uses the interfaceSolution
statement. Other Fortran compilers can have a different syntax for the inclusion of code
in C calling convention.

INTERFACE TO SUBROUTINE FB0043[C](IN,OUT,IP,RP,DP,BP,SP)
INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]
REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END

PROGRAM IDCALL
IMPLICIT NONE
INTEGER IP(10),i
REAL IN
REAL OUT
REAL RP
REAL BP
DOUBLE PRECISION DP
CHARACTER*80 SP

IP(2) = -1
CALL FB0043(IN,OUT,IP,RP,DP,BP,SP)
print*,” ”
print*,” Blockname: ”,SP
i = ANINT(IN)
print*,” INs: ”,i
i = ANINT(OUT)
print*,” OUTs:”,i
print*,” IPs: ”,IP(3)
print*,” RPs: ”,IP(8)
print*,” DPs: ”,IP(9)
print*,” BPs: ”,IP(10)
print*,” ”
STOP
END

This is the output of the program:Output

Blockname: FDIST

INs: 1

Tutorial

216 11. INSEL without GUI

OUTs: 4
IPs: 18
RPs: 1002
DPs: 1002
BPs: 5

The C/C++ code is very similar:C/C++ code

#include <stdio.h>
#include ”MyTypes.h”

extern ”C” void fb0043(REAL* IN, REAL* OUT, INT* IP, REAL* RP,
DOUBLE* DP, REAL* BP, STRARRAY SP, unsigned int SPlen = FOR_STRLEN);

void main()
{

INT IP[10];
REAL IN;
REAL OUT;
REAL RP;
REAL BP;
DOUBLE DP;
STRARRAY SP;
int i;

IP[1] = -1;
fb0043(&IN, &OUT, IP, &RP, &DP, &BP, SP);
printf(”\n”);
printf(” Blockname: %s\n”,SP);
i = int(IN);
printf(” INs: %i\n”,i);
i = int(OUT);
printf(” OUTs: %i\n”,i);
printf(” IPs: %i\n”,IP[2]);
printf(” RPs: %i\n”,IP[7]);
printf(” DPs: %i\n”,IP[8]);
printf(” BPs: %i\n”,IP[9]);
printf(”\n”);

}

The output, too:C/C++ output

Blockname: FDIST

INs: 1
OUTs: 4
IPs: 18
RPs: 1002
DPs: 1002
BPs: 5

Before an INSEL block can be used, it must be called in the Constructor call. This isConstructor call
accomplished by calling the block with IP(2) = 1 in Fortran or IP[1] = 1 in C/C++.
Some blocks perform plausibility checks or initializations in the mode, some do nothing.

Tutorial

11.5. Direct calls of INSEL blocks 217

Nevertheless, any INSEL block should be called in the Constructor call in order to avoid
unwanted side effects.

After these preparations the respective INSEL block is ready for use and can be called inStandard call
Standard call mode, i. e., with IP(2) = 0 in Fortran or IP[1] = 0 in C/C++, as often as
you like. Nearly all INSEL blocks allow for an unlimited number of instances. The
calling program must take care for their memory management, however.

Some few INSEL blocks – like the fitting routines, for example – perform their mainDestructor call
action during the Destructor call, most blocks do nothing in this call mode. Hence, every
INSEL block instance should be called in this mode before the host program terminates.

Before we look at some examples, notice that all INSEL blocks can generate textualINSEL message
output output like error messages, warnings etc. What is the target of these message streams?

In INSEL all output messages finally end in a call to the routine os0txt implemented in
an inselText DLL.

Some default inselText DLLs are provided with INSEL, like msgBox.dll which generates
a MessageBox with an OK button for each INSEL message output, or noText.dll which
completely supresses the INSEL message output.

INSEL interface programmers can write their own DLLs for INSEL message output. The
function os0txt takes two parameters: a handle to the window for the text output and a
pointer to a string, which contains the message text. The prototype of the function being

void os0txt(int hwnd, char czMeldung[80]);

The DLL which provides the routine os0txt is specified in inselDi.ini.

Let us start with a super-trivial example and define a constant 17 with the CONST blockCONST example
of INSEL and display its value on screen via a call to the SCREEN block. Although this is
in fact not really a have-to-use-INSEL example, it shows the main principles of
interacting with INSEL blocks.

Fortran code

C CONST block --
INTERFACE TO SUBROUTINE FB0001[C](IN,OUT,IP,RP,DP,BP,SP)

INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]
REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C SCREEN block ---

INTERFACE TO SUBROUTINE FB0014[C](IN,OUT,IP,RP,DP,BP,SP)
INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]

Tutorial

218 11. INSEL without GUI

REAL RP [REFERENCE]
REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C --

PROGRAM TRIVIAL_BUT_

IMPLICIT NONE
INTEGER IP1(10),IP2(11)
REAL IN1, IN2(6)
REAL OUT1, OUT2
REAL RP1, RP2
REAL BP1, BP2
DOUBLE PRECISION DP1, DP2
CHARACTER*80 SP1, SP2
INTEGER WINDOW / 0 /
CHARACTER*80 TEXT /” ”/

C Initialise INSEL message system
CALL LOS0TXT(WINDOW,TEXT)

C Constructor calls
IP1(2) = 1
BP1 = 17.0
CALL FB0001(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)

IP2(2) = 1
IP2(5) = 1 ! SCREEN block with one input
SP2 = ’(’’ SCREEN block: ’’,F7.1)’
CALL FB0014(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)

C Standard calls
IP1(2) = 0
CALL FB0001(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)

IP2(2) = 0
IN2 = OUT1
CALL FB0014(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)

C Destructor calls
IP1(2) = 2
CALL FB0001(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)
IP2(2) = 2
CALL FB0014(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)

STOP
END

As expected, the output is:Output

SCREEN block: 17.0

Please, observe a few details in the Fortran code.

Tutorial

11.5. Direct calls of INSEL blocks 219

First, before anything happens, the INSEL message system should be initialized by a callLOS0TXT
to LOS0TXT. The variable WINDOW contains the handle to the window, where the output
messages go to. If this parameter is set to zero, inselText.dll writes into a DOS box.
TEXT usually contains the complete message string and can be blank in the first call.
Both parameters are handed over by reference, i. e., a C call could look like

extern ”C” void __stdcall LOS0TXT
(_int32* dummy, char Text[80], unsigned int len = 80);

_int32 Fenster;
char Text[80];
LOS0TXT(&Fenster,Text);

LOS0TXT provides a quick solution to hand over a message to the INSEL message system.

Second, the SCREEN block makes use of the parameter IP(5) which is reserved inIP(5)
INSEL for the number of currently connected block inputs. Usually, the inselEngine sets
this parameter. However, in external programs, the calling program must set IP(5) to an
appropriate value, i. e., one in the present case.

Third, the string parameter SP(1) of the SCREEN block should be set before the
constructor call is made, since the constructor call performs plausibility checks on its
value.

Fourth, all blocks should finally be called in the Destructor call. If you call the SCREEN
block with an invalid format you will see one reason, why.

Do not initialize variables which don’t exist, i. e., if a block has no RP, for instance, doWARNING
not assign a value to it, otherwise the result is unpredictable.

We are now ready for a more complex application.

Write a Fortran or C program which reads monthly mean values for any location fromExercise 11.4
the inselWeather data base (MTM block in em0018), calculates a time series of global
radiation on a horizontal plane for one year in daily resolution (GENGD block in
em0016) and plots the data (PLOT block in fb0044). For the generation of the sequence of
days and months use the CLOCK block in fb0024.

Rather than explaining twenty details we show verbatim copies of the original blockHints
headers. They can also serve as further examples for the src2tex application, as
described in Section ??.
This is the header of the CLOCK block, as implemented in fb0024.f.CLOCK

C---
C #Begin
C #Block CLOCK
C #Description
C The CLOCK block generates date and time of the actual
C simulation time step with constant increment.
C #Layout
C #Inputs 0 \ldots [1]

Tutorial

220 11. INSEL without GUI

C #Outputs 6
C #Parameters 13
C #Strings 1
C #Group T
C #Details
C #Inputs
C #IN(1) Output t of a predecessor (optional). Should the
C block defining the t signal be executed again after
C CLOCK has finished its operation, the
C CLOCK block performs a reset and starts again.
C #Outputs
C #OUT(1) Year a
C #OUT(2) Month M
C #OUT(3) Day d
C #OUT(4) Hour h
C #OUT(5) Minute m
C #OUT(6) Second s
C #Parameters
C #BP(1) Start on year a_1
C #BP(2) Start on month M_1
C #BP(3) Start on day d_1
C #BP(4) Start on hour h_1
C #BP(5) Start on minute m_1
C #BP(6) Start on second s_1
C #BP(7) Stop on year a_2
C #BP(8) Stop on month M_2
C #BP(9) Stop on day d_2
C #BP(10) Stop on hour h_2
C #BP(11) Stop on minute m_2
C #BP(12) Stop on second s_2
C #BP(13) Increment Δt
C #Strings
C #SP(1) Unit of the increment Δt,
C case sensitive, ie ’m’ \neq ’M’, for example
C \begin{detaillist}
C \item[’a’] Years
C \item[’M’] Months
C \item[’d’] Days
C \item[’h’] Hours
C \item[’m’] Minutes
C \item[’s’] Seconds
C \end{detaillist}
C #Internals
C #Integers
C #IP(1) Return code
C #IP(2) Call mode
C \begin{detaillist}
C \item[-1] Identification call
C \item[0] Standard call
C \item[1] Constructor call
C \item[2] Destructor call
C \end{detaillist}
C #IP(3) Operation mode
C #IP(4) User defined block number

Tutorial

11.5. Direct calls of INSEL blocks 221

C #IP(5) Number of current block inputs
C #IP(6) Jump parameter
C #IP(7) Debug level
C #IP(8..10) Reserved
C #IP(11) Integer representation of BP(1)
C #IP(12) Integer representation of BP(2)
C #IP(13) Integer representation of BP(3)
C #IP(14) Integer representation of BP(4)
C #IP(15) Integer representation of BP(5)
C #IP(16) Corresponding Julian day
C #IP(17) Integer representation of BP(7)
C #IP(18) Integer representation of BP(8)
C #IP(19) Integer representation of BP(9)
C #IP(20) Integer representation of BP(10)
C #IP(21) Integer representation of BP(11)
C #IP(22) Corresponding Julian day
C #IP(23) First call to CLOCK block
C #IP(24) Mode
C #IP(25) Integer representation of BP(13)
C #IP(26) Current year
C #IP(27) Current month
C #IP(28) Current day
C #IP(29) Current hour
C #IP(30) Current minute
C #IP(31) Second of year when to start as defined thru BP(1) to
C BP(6)
C #IP(32) Second of year when to stop as defined thru BP(7) to
C BP(12)
C #IP(33) Current Julian day
C #IP(34) Counter for the number of calls with invalid date
C #Reals
C #RP(1) Current second
C #Doubles
C #None
C #Dependencies
C Subroutine CKDATE
C Subroutine CKTIME
C Subroutine GREGOR
C Function ID
C Function ISOY
C Subroutine JULIAN
C Subroutine MSG
C Subroutine STRIP
C #Authors
C Juergen Schumacher
C #End
C---

This is the header of the MTM block, as implemented in em0018.f.MTM

C---
C #Begin
C #Block MTM, MTMLALO
C #Description MTM
C The MTM block returns monthly mean values of meteorological

Tutorial

222 11. INSEL without GUI

C data from the inselWeather database.
C #Description MTMLALO
C The MTMLALO block returns monthly mean values of meteorological
C data for a location specified by latitude and longitude
C interpolated from the inselWeather database.
C #Layout MTM
C #Inputs 1
C #Outputs 9
C #Parameters 0 \ldots [6]
C #Strings 1
C #Group S
C #Layout MTMLALO
C #Inputs 1
C #Outputs 9
C #Parameters 2
C #Strings 0
C #Group S
C #Details
C #Inputs
C #IN(1) Month $M \in [1,12]$
C #Outputs
C #OUT(1) Global radiation $G_{\rm h}$ / W\,m$^{-2}$ on a horizontal
C plane
C #OUT(2) Wind speed $v_{\rm w}$ / m\,s$^{-1}$
C #OUT(3) Ambient temperature T / $^\circ$C
C #OUT(4) Minimum ambient temperature $T_{\rm a,min}$
C / $^\circ$C
C #OUT(5) Maximum ambient temperature $T_{\rm a,max}$
C / $^\circ$C
C / $^\circ$C
C #OUT(6) Rain / mm
C #OUT(7) Annual mean ambient temperature
C / $^\circ$C
C #OUT(8) Maximum ambient temperature difference
C / $^\circ$C
C #OUT(9) Relative humidity
C #Parameters MTM
C #BP(1) Latitude $\varphi \in [-90^\circ,+90^\circ]$, northern
C hemisphere positive
C #BP(2) Longitude $\lambda \in [0^\circ,360^\circ)$,
C west of Greenwich; values east of Greenwich may be used
C with a minus sign
C #BP(3) Latitude range $\Delta\varphi$ / $^\circ$
C #BP(4) Longitude range $\Delta\lambda$ / $^\circ$
C #BP(5) Country code CC
C #BP(6) Continent code KC
C #Parameters MTMLALO
C #BP(1) Latitude $\varphi \in [-90^\circ,+90^\circ]$, northern
C hemisphere positive
C #BP(2) Longitude $\lambda \in [0^\circ,360^\circ)$,
C west of Greenwich; values east of Greenwich may be used
C with a minus sign
C #Strings MTM
C #SP(1) Name of location

Tutorial

11.5. Direct calls of INSEL blocks 223

C #Strings MTMLALO
C #None
C #Internals
C #Integers
C #IP(1) Return code
C #IP(2) Call mode
C \begin{detaillist}
C \item[-1] Identification call
C \item[0] Standard call
C \item[1] Constructor call
C \item[2] Destructor call
C \end{detaillist}
C #IP(3) Operation mode
C #IP(4) User defined block number
C #IP(5) Number of current block inputs
C #IP(6) Jump parameter
C #IP(7) Debug level
C #IP(8..10) Reserved
C #IP(11) Counter for the number of calls with invalid input
C #IP(12) Continent code
C #IP(13) Country code
C #IP(14) REPORT PROVISORIUM
C #Reals
C #RP(1-12) Global radiation / W\,m$^{-2}$
C #RP(13-24) Wind speed / m\,s$^{-1}$
C #RP(25-36) Ambient temperature / \degC
C #RP(37-48) Minimum ambient temperature / \degC
C #RP(49-60) Minimum ambient temperature / \degC
C #RP(61-72) Precipitation / mm
C #RP(73) Latitude from data base
C #RP(74) Longitude from data base
C #RP(75) Estimated time zone
C #RP(76) Height from data base
C #RP(77-88) Relative humidity
C #RP(89) Gmean
C #RP(90) vmean
C #RP(91) T1mean
C #RP(92) T2mean
C #RP(93) T3mean
C #RP(94) Rmean
C #RP(95) RHmean
C #Doubles
C #None
C #Dependencies
C Subroutine MSG
C Subroutine MTLOC
C Subroutine MTMCLO
C Subroutine MTMDAT
C Subroutine MTMGET
C Subroutine MTMLST
C Subroutine MTMPTR
C Subroutine STRIP
C #Authors
C Christian Langer

Tutorial

224 11. INSEL without GUI

C Jibbo Mueller
C Juergen Schumacher
C Marc Esser
C #End
C---

This is the header of the GENGD block, as implemented in em0016.f.GENGD

C---
C #Begin
C #Block GENGD
C #Description
C The GENGD block generates a series of daily global
C radiation data from monthly mean values.
C #Layout
C #Inputs 4
C #Outputs 1
C #Parameters 9
C #Strings 0
C #Group S
C #Details
C #Inputs
C #IN(1) Monthly mean value $G_{\rm h}(M)$ / W\,m$^{-2}$ of global
C radiation on a horizontal plane
C #IN(2) Year a
C #IN(3) Month $M \in [1,12]$
C #IN(4) Day $d \in [1,31]$
C #Outputs
C #OUT(1) Daily mean value $G_{\rm h}(d)$ / W\,m$^{-2}$ of global
C radiation on a horizontal plane
C #Parameters
C #BP(1) Model
C \begin{detaillist}
C \item[0] Gordon Reddy model
C \item[1] Aguiar Collares-Pereira model
C \end{detaillist}
C #BP(2) Latitude $\varphi \in [-90^\circ,+90^\circ]$, northern
C hemisphere positive
C #BP(3) Longitude $\lambda \in [0^\circ,360^\circ)$,
C west of Greenwich; values east of Greenwich may be used
C with a minus sign
C #BP(4) Time zone $Z \in [0,23]$, Greenwich Mean Time $Z=0$,
C Central European Time $Z=23$.
C #BP(5) Variance factor f_σ to the Gordon / Reddy
C correlation, eq \ref{GR_sigma}; if unknown $f_\sigma =
C 1$ is recommended
C #BP(6) Coefficient c_{σ} corresponding to the
C year-to-year variability due to different climatic
C conditions. When c_{σ} is set to zero
C the year-to-year variability is omitted.
C $c_{\sigma} = 0.185$ approximates North American
C variability, while $c_{\sigma} = 0.3$ approximates
C European variability
C #BP(7) Autocorrelation coefficient $\rho(1)$ at a lag of one
C day; if unknown $\rho(1) = 0.3$ is recommended

Tutorial

11.5. Direct calls of INSEL blocks 225

C #BP(8) Autocorrelation coefficient $\rho(2)$ at a lag of two
C days; if unknown $\rho(2) = 0.57 \rho(1)$ is recommended
C #BP(9) Initialisation $I_{\rm seed}$ of random number generator
C #Strings
C #None
C #Internals
C #Integers
C #IP(1) Return code
C #IP(2) Call mode
C \begin{detaillist}
C \item[-1] Identification call
C \item[0] Standard call
C \item[1] Constructor call
C \item[2] Destructor call
C \end{detaillist}
C #IP(3) Operation mode
C #IP(4) User defined block number
C #IP(5) Number of current block inputs
C #IP(6) Jump parameter
C #IP(7) Debug level
C #IP(8..10) Reserved
C #IP(11) Year for which data have already been generated
C #IP(12) Month for which data have already been generated
C #IP(13) Updated version of $I_{\rm seed}$ as manipulated by
C ran1.for
C #IP(14)..IP(16) Integer memory for Ran1
C #IP(17) Mode
C #IP(18) Last generated kt value (mode 2 only)
C #Reals
C #RP(1)..RP(31) Memory for daily radiation data
C #RP(32)..RP(128) Real memory for Ran1
C #Doubles
C #None
C #Dependencies
C Subroutine GENGD
C Subroutine MSG
C Function GASDEV
C #Authors
C Juergen Schumacher
C #End
C---

This is the header of the PLOT block, as implemented in fb0044.f.PLOT

C---
C #Begin
C #Block PLOT, PLOTP, PLOTPMC, PLOTPM3D, PLOTG
C #Description PLOT
C The PLOT block generates graphical output of its connected
C input data via gnuplot.
C #Description PLOTP
C The PLOTP block generates a parametric graphical output of
C its connected input data via gnuplot.
C #Description PLOTPMC
C The PLOTPMC block generates a palette-mapped carpet plot output

Tutorial

226 11. INSEL without GUI

C of its connected input data via gnuplot.
C #Description PLOTPM3D
C The PLOTPM3D block generates a palette-mapped 3D plot output
C of its connected input data via gnuplot.
C #Layout PLOT
C #Inputs $2 \ldots [20]$
C #Outputs 0
C #Parameters 0
C #Strings $0 \ldots [1]$
C #Group S
C #Layout PLOTP
C #Inputs $3 \ldots [20]$
C #Outputs 0
C #Parameters 0
C #Strings $0 \ldots [1]$
C #Group S
C #Layout PLOTPMC
C #Inputs 3
C #Outputs 0
C #Parameters 0
C #Strings $0 \ldots [1]$
C #Group S
C #Layout PLOTPM3D
C #Inputs 3
C #Outputs 0
C #Parameters 0
C #Strings $0 \ldots [1]$
C #Group S
C #Details
C #Inputs PLOT
C #IN(1) Any signal x
C #IN(2) Any signal y_1
C #IN(n) Any signal y_{n-1}
C #Inputs PLOTP
C #IN(1) Curve parameter p
C #IN(2) Any signal x
C #IN(3) Any signal y_1
C #IN(n) Any signal y_{n-2}
C #Inputs PLOTPMC
C #IN(1) Any signal x
C #IN(2) Any signal y
C #IN(3) Any signal z
C #Inputs PLOTPM3D
C #IN(1) Any signal x
C #IN(2) Any signal y
C #IN(3) Any signal z
C #Outputs
C #None
C #Parameters
C #None
C #Strings
C #SP(1) File name fn of a gnuplot command file. If
C no file name is provided, a default file insel.gnu
C is generated with default gnuplot commands.

Tutorial

11.5. Direct calls of INSEL blocks 227

C #Internals
C #Integers
C #IP(1) Return code
C #IP(2) Call mode
C \begin{detaillist}
C \item[-1] Identification call
C \item[0] Standard call
C \item[1] Constructor call
C \item[2] Destructor call
C \end{detaillist}
C #IP(3) Operation mode
C #IP(4) User defined block number
C #IP(5) Number of current block inputs
C #IP(6) Jump parameter
C #IP(7) Debug level
C #IP(8..10) Reserved
C #IP(11) Unit number of data file insel.gpl
C #IP(12) Unit number of gnuplot file *.gnu
C #ICOLS Number of columns in the gnuplot data file
C #Reals
C #None
C #Doubles
C #None
C #Dependencies
C Subroutine MSG
C Subroutine STRIP
C #Authors
C Juergen Schumacher
C #End
C---

At first, we choose Stuttgart as location and do not solve the task in one step but checkSolution
the access to the data base in a first step. There are many traps, so it seems to be
advisable, to reduce their number and start with a smaller piece of cake.

This is the Fortran code which plots the twelve monthly mean values of the global
irradiance – read from the inselWeather data base.

C CLOCK block --
INTERFACE TO SUBROUTINE FB0024[C](IN,OUT,IP,RP,DP,BP,SP)

INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]
REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C MTM block --

INTERFACE TO SUBROUTINE EM0018[C](IN,OUT,IP,RP,DP,BP,SP)
INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]

Tutorial

228 11. INSEL without GUI

REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C PLOT block ---

INTERFACE TO SUBROUTINE FB0044[C](IN,OUT,IP,RP,DP,BP,SP)
INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]
REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C --

PROGRAM dailyRadiationData1

IMPLICIT NONE ! CLOCK MTM PLOT
INTEGER IP1(34),IP2(13),IP3(13)
REAL IN1, IN2, IN3(20)
REAL OUT1(6),OUT2(9),OUT3
REAL RP1, RP2(95),RP3
REAL BP1(13),BP2(6), BP3
DOUBLE PRECISION DP1, DP2, DP3
CHARACTER*80 SP1, SP2, SP3
INTEGER WINDOW / 0 /
CHARACTER*80 TEXT /’ ’/

INTEGER i

C Initialise INSEL message system
CALL LOS0TXT(WINDOW,TEXT)

C Constructor calls
BP1(1) = 2006.0 ! Start year
BP1(2) = 1.0 ! Start month
BP1(3) = 1.0 ! Start day
BP1(4) = 0.0 ! Start hour
BP1(5) = 0.0 ! Start minute
BP1(6) = 0.0 ! Start second
BP1(7) = 2007.0 ! End year
BP1(8) = 1.0 ! End month
BP1(9) = 1.0 ! End day
BP1(10) = 0.0 ! End hour
BP1(11) = 0.0 ! End minute
BP1(12) = 0.0 ! End second
BP1(13) = 1.0 ! Increment
SP1 = ’M’ ! Run in months
DO i = 1,34

IP1(i) = 0
END DO
IP1(2) = 1 ! Constructor call
RP1 = 0.0
CALL FB0024(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)

Tutorial

11.5. Direct calls of INSEL blocks 229

IF (IP1(1) .NE. 0) STOP ’CLOCK constructor call failed’

DO i = 1,13
IP2(i) = 0

END DO
DO i = 1,95

RP2(i) = 0.0
END DO
DO i = 1,6

BP2(i) = 0.0
END DO
SP2 = ’Stuttgart’
IP2(2) = 1 ! Constructor call
CALL EM0018(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)
IF (IP2(1) .NE. 0) STOP ’MTM constructor call failed’

DO i = 1,13
IP3(i) = 0

END DO
IP3(3) = 1 ! Operation mode OPM = 1, i.e. PLOT block (not

PLOTP)
IP3(5) = 2 ! Two block inputs: (1) Month, (2) Radiation
RP3 = 0.0
BP3 = 1.0 ! Mode 1
SP3 = ’ ’
IP3(2) = 1 ! Constructor call
CALL FB0044(IN3,OUT3,IP3,RP3,DP3,BP3,SP3)
IF (IP3(1) .NE. 0) STOP ’PLOT constructor call failed’

C Standard calls
IP1(2) = 0
IP2(2) = 0
IP3(2) = 0
DO i = 1,12

C Call CLOCK to return month
CALL FB0024(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)
IN2 = OUT1(2) ! = Current month

C Call MTM to return monthly mean radiation value
CALL EM0018(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)
!print*,”G = ”,OUT2(1)
IN3(1) = i
IN3(2) = OUT2(1)
CALL FB0044(IN3,OUT3,IP3,RP3,DP3,BP3,SP3)

END DO

C Destructor calls
IP1(2) = 2
IP2(2) = 2
IP3(2) = 2
CALL FB0024(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)
CALL EM0018(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)
CALL FB0044(IN3,OUT3,IP3,RP3,DP3,BP3,SP3)

STOP

Tutorial

230 11. INSEL without GUI

END

The program generates this Gnuplot graph:

Now, it’s only a small step to calculate and plot the daily radiation time series.

C CLOCK block --
INTERFACE TO SUBROUTINE FB0024[C](IN,OUT,IP,RP,DP,BP,SP)

INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]
REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C MTM block --

INTERFACE TO SUBROUTINE EM0018[C](IN,OUT,IP,RP,DP,BP,SP)
INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]
REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C PLOT block ---

INTERFACE TO SUBROUTINE FB0044[C](IN,OUT,IP,RP,DP,BP,SP)
INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]
REAL BP [REFERENCE]

Tutorial

11.5. Direct calls of INSEL blocks 231

DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C GENGD block --

INTERFACE TO SUBROUTINE EM0016[C](IN,OUT,IP,RP,DP,BP,SP)
INTEGER IP [REFERENCE]
REAL IN [REFERENCE]
REAL OUT [REFERENCE]
REAL RP [REFERENCE]
REAL BP [REFERENCE]
DOUBLE PRECISION DP [REFERENCE]
CHARACTER*80 SP [REFERENCE]

END
C --

PROGRAM dailyRadiationData2

IMPLICIT NONE ! CLOCK MTM PLOT GENGD
INTEGER IP1(34),IP2(13),IP3(13),IP4(18)
REAL IN1, IN2, IN3(20),IN4(4)
REAL OUT1(6),OUT2(9),OUT3, OUT4
REAL RP1, RP2(95),RP3, RP4(128)
REAL BP1(13),BP2(6), BP3, BP4(9)
DOUBLE PRECISION DP1, DP2, DP3, DP4
CHARACTER*80 SP1, SP2, SP3, SP4
INTEGER WINDOW / 0 /
CHARACTER*80 TEXT /’ ’/

INTEGER i

C Initialise INSEL message system
CALL LOS0TXT(WINDOW,TEXT)

C Constructor calls
BP1(1) = 2006.0 ! Start year
BP1(2) = 1.0 ! Start month
BP1(3) = 1.0 ! Start day
BP1(4) = 0.0 ! Start hour
BP1(5) = 0.0 ! Start minute
BP1(6) = 0.0 ! Start second
BP1(7) = 2007.0 ! End year
BP1(8) = 1.0 ! End month
BP1(9) = 1.0 ! End day
BP1(10) = 0.0 ! End hour
BP1(11) = 0.0 ! End minute
BP1(12) = 0.0 ! End second
BP1(13) = 1.0 ! Increment
SP1 = ’d’ ! Run in days
DO i = 1,34

IP1(i) = 0
END DO
IP1(2) = 1 ! Constructor call
RP1 = 0.0
DP1 = 0.0
CALL FB0024(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)

Tutorial

232 11. INSEL without GUI

IF (IP1(1) .NE. 0) STOP ’CLOCK constructor call failed’

DO i = 1,13
IP2(i) = 0

END DO
DO i = 1,95

RP2(i) = 0.0
END DO
DO i = 1,6

BP2(i) = 0.0
END DO
DP2 = 0.0
SP2 = ’Stuttgart’
IP2(2) = 1 ! Constructor call
CALL EM0018(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)
IF (IP2(1) .NE. 0) STOP ’MTM constructor call failed’

DO i = 1,13
IP3(i) = 0

END DO
IP3(3) = 1 ! Operation mode OPM = 1, i.e. PLOT block (not PLOTP)
IP3(5) = 2 ! Two block inputs: (1) Month, (2) Radiation
RP3 = 0.0
DP3 = 0.0
BP3 = 1.0 ! Mode 1
SP3 = ’ ’
IP3(2) = 1 ! Constructor call
CALL FB0044(IN3,OUT3,IP3,RP3,DP3,BP3,SP3)
IF (IP3(1) .NE. 0) STOP ’PLOT constructor call failed’

DO i = 1,18
IP4(i) = 0

END DO
DO i = 1,128

RP4(i) = 0.0
END DO
BP4(1) = 1.0 ! Model: Use the Gordon Reddy model
BP4(2) = RP2(73) ! Latitude: Is available from MTM
BP4(3) = RP2(74) ! Longitude: Dito
BP4(4) = 23.0 ! Time zone: We know it, definitely
BP4(5) = 1.0 ! Variance factor: Recommended default
BP4(6) = 0.0 ! No year-to-year variability
BP4(7) = 0.3 ! Recommended default
BP4(8) = 0.171 ! Recommended default = 0.57 * BP4(7)
BP4(9) = 4711 ! Any initialisation of the random number generator
IP4(2) = 1 ! Constructor call
CALL EM0016(IN4,OUT4,IP4,RP4,DP4,BP4,SP4)
IF (IP4(1) .NE. 0) STOP ’GENGD constructor call failed’

C Standard calls
IP1(2) = 0
IP2(2) = 0
IP3(2) = 0
IP4(2) = 0

Tutorial

11.5. Direct calls of INSEL blocks 233

DO i = 1,365
C Call CLOCK to return month

CALL FB0024(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)
IN2 = OUT1(2) ! = Current month

C Call MTM to return monthly mean radiation value
CALL EM0018(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)
IN4(1) = OUT2(1) ! Monthly mean radiation
IN4(2) = OUT1(1) ! Year
IN4(3) = OUT1(2) ! Month
IN4(4) = OUT1(3) ! Day
CALL EM0016(IN4,OUT4,IP4,RP4,DP4,BP4,SP4)
IN3(1) = i
IN3(2) = OUT4
CALL FB0044(IN3,OUT3,IP3,RP3,DP3,BP3,SP3)

END DO

C Destructor calls
IP1(2) = 2
IP2(2) = 2
IP3(2) = 2
IP4(2) = 2
CALL FB0024(IN1,OUT1,IP1,RP1,DP1,BP1,SP1)
CALL EM0018(IN2,OUT2,IP2,RP2,DP2,BP2,SP2)
CALL FB0044(IN3,OUT3,IP3,RP3,DP3,BP3,SP3)
CALL EM0016(IN4,OUT4,IP4,RP4,DP4,BP4,SP4)

STOP
END

This is the plot of the daily radiation time series for Stuttgart, Germany.

Tutorial

234 11. INSEL without GUI

11.6 The C++ class CinselBlock
C/C++ programmers may prefer to use the wrapper class CinselBlock instead of
directly interfering with the INSEL blocks. The class is exported by inselTools.dll,
hence the code needs to be linked with inselTools.lib as usual. We show an example,
how the wrapper class can be used to call a single INSEL block – the attenuator block
ATT.

#include <stdio.h>
#include <windows.h>
#include ”CinselBlock.h”

extern ”C” void __stdcall LOS0TXT(_int32* dummy,
char Text[80], unsigned int len = 80);

void main()
{

// Initialise INSEL message output
_int32 Fenster = 0;
char Text[80];
LOS0TXT(&Fenster,Text);

// Create INSEL block
CinselBlock myATT(”c:/Programme/inselDi/inselFB.dll”,

”fb0006”, // (1) ROOT, (2) GAIN, (3) ATT
1, // Inputs
1, // Outputs
10, // INTEGER parameters
0, // REAL parameters
0, // DOUBLE PRECISION parameters
1, // Block parameters
0 // String parameters
);

int iRC = 0; // Return code
int i;

// Set required variables
myATT.setOperationMode(3); // ATT block

//myATT.setBP(1,0); // BP(1) = 0 gives an error message
myATT.setBP(1,2); // BP(1) = 2 is allright

myATT.callBlock(1); // Constructor call
iRC = myATT.getIP(1); // Get return code
if (iRC != 0)
{

sprintf(Text,”Return code IP(1) = %d\n”,iRC);
LOS0TXT(&Fenster,Text);
return;

}
else
{

for (i = 0; i<= 10; i++)
{

myATT.setIN(1,i); // IN(1)

Tutorial

11.6. The C++ class CinselBlock 235

myATT.callBlock(0); // Standard call
sprintf(Text,” %d / BP(1) = %f\n”,i,myATT.getOutput(1));
LOS0TXT(&Fenster,Text);

}
}
myATT.callBlock(2); // Destructor call

}

The include file CinselBlock.h contains the prototypes of all members of the
CinselBlock class and will be discussed in a minute.

After the initialisation of the INSEL message system the constructor of CinselBlockC++ constructor
creates an instance named myATT of the attenuator block. The call allocates the complete
memory of the ATT block. Its parameters are the full path to the DLL which contains the
routine with the ATT block. Please observe, that it is no longer necessary to statically
link the library inselFB.lib. The constructor call loads the library dynamically.

Since fb0006 contains more than one block (the source code of fb0006 has beenOne vs. zero
presented on page ??ff.) the operation mode has to be set to the value three for the ATT
block. This is accomplished by the function myATT.setOperationMode. The next
statement sets the first block parameter to a value of two before the block is called in
Constructor call. Please notice, that the CinselBlock class uses the index one for the
first block parameter – and not zero, as is the usual habit in C/C++.

The rest of the code should be self explaining. We used the LOS0TXT routine for textual
output. This is better than just a printf output but in a professional project the MSG
routine as discussed in section is the better choice.

The complete header file is this:CinselBlock.h

typedef char (*STRARRAY)[80];
typedef UINT (__cdecl *LPFNDLLFUNC)

(float*, float*, int*, float*,
double*, float*, STRARRAY, unsigned int);

enum CallMode
{

ConstructorCall = 1,
DestructorCall = 2,
StandardCall = 0

};
class __declspec(dllexport) CinselBlock
{
public:

CinselBlock(char DLLName[], char FName[], int nIN, int nOUT,
int nIP, int nRP, int nDP, int nBP, int nSP);

~CinselBlock(void);
HINSTANCE m_hDLL; // Handle to DLL
int setIN(int iIndex, float Value);
int setBP(int iIndex, float Value);
int setIP(int iIndex, int Value);
int setSP(int iIndex, char czText[80]);

Tutorial

236 11. INSEL without GUI

int setINArray(float Value[]);
int setBPArray(float Value[]);
int setOperationMode(int Value);
int setNumberOfUserInput(int Value);
float getOutput(int iIndex);
float getBP(int iIndex);
float getRP(int iIndex);
double getDP(int iIndex);
int getIP(int iIndex);
int getOutputArray(float Value[]);
int getRPArray(float Value[]);
int callBlock(void);
int callBlock(int iCallMode);

// Parses a file for BP’s and generates an appropiate array.
// Return value is the array size.

int SetBPfromFile(char szFileName[]);
int SetBPfromFile(char szFileName[], int iStartPos);

private:
LPFNDLLFUNC m_UserBlock; // Function pointer
int m_nIn;
int m_nOut;
int m_nRP;
int m_nBP;
float* m_pIN;
float* m_pOUT;
int* m_pIP;
float* m_pRP;
double* m_pDP;
float* m_pBP;
STRARRAY m_pSP;

};

It should now be clear, how the wrapper class CinselBlock can be used to solve moreExercise 11.5
advanced applications. Maybe you like to realize the example with the daily radiation
data generation with it.

Solution

#include <stdio.h>
#include <windows.h>
#include ”CinselBlock.h”

extern ”C” void __stdcall LOS0TXT(_int32* dummy,
char Text[80], unsigned int len = 80);

void main()
{

// Initialise INSEL message output
_int32 Fenster = 0;
char Text[80];
LOS0TXT(&Fenster,Text);

// Create INSEL blocks
// CLOCK (fb0024), MTM (em0018), PLOT (fb0044), and GENGD (em0016)

Tutorial

11.6. The C++ class CinselBlock 237

CinselBlock myCLOCK(”c:/Programme/inselDi/inselFB.dll”,”fb0024”,
0, // Inputs
6, // Outputs
34, // INTEGER parameters
1, // REAL parameters
0, // DOUBLE PRECISION parameters
13, // Block parameters
1 // String parameters
);

CinselBlock myMTM(”c:/Programme/inselDi/inselEM.dll”,”em0018”,
1, // Inputs
9, // Outputs
13, // INTEGER parameters
95, // REAL parameters
0, // DOUBLE PRECISION parameters
6, // Block parameters
1 // String parameters
);

CinselBlock myPLOT(”c:/Programme/inselDi/inselFB.dll”,”fb0044”,
2, // Inputs
0, // Outputs
13, // INTEGER parameters
1, // REAL parameters
0, // DOUBLE PRECISION parameters
1, // Block parameters
0 // String parameters
);

CinselBlock myGENGD(”c:/Programme/inselDi/inselEM.dll”,”em0016”,
4, // Inputs
1, // Outputs
18, // INTEGER parameters
128, // REAL parameters

0, // DOUBLE PRECISION parameters
9, // Block parameters
0 // String parameters
);

int iRC = 0; // Return code
int i;

myCLOCK.setBP(1,2006.0); // BP(1) = Start year
myCLOCK.setBP(2, 1.0); // BP(2) = Start month
myCLOCK.setBP(3, 1.0); // BP(3) = Start day
myCLOCK.setBP(4, 0.0); // BP(4) = Start hour
myCLOCK.setBP(5, 0.0); // BP(5) = Start minute
myCLOCK.setBP(6, 0.0); // BP(6) = Start second
myCLOCK.setBP(7,2007.0); // BP(7) = End year
myCLOCK.setBP(8, 1.0); // BP(8) = End month
myCLOCK.setBP(9, 1.0); // BP(9) = End day
myCLOCK.setBP(10, 0.0); // BP(10) = End hour
myCLOCK.setBP(11, 0.0); // BP(11) = End minute
myCLOCK.setBP(12, 0.0); // BP(12) = End second
myCLOCK.setBP(13, 1.0); // BP(13) = Increment
myCLOCK.setSP(1,”d”); // SP(1) = Unit of increment

Tutorial

238 11. INSEL without GUI

myCLOCK.callBlock(1); // Constructor call

iRC = myCLOCK.getIP(1);
if (iRC != 0)
{

sprintf(Text,”CLOCK constructor call failed”);
LOS0TXT(&Fenster,Text);
return;

}

myMTM.setSP(1,”Stuttgart”); // SP(1) = Location
myMTM.callBlock(1); // Constructor call

iRC = myMTM.getIP(1);
if (iRC != 0)
{

sprintf(Text,”MTM constructor call failed”);
LOS0TXT(&Fenster,Text);
return;

}

myPLOT.setOperationMode(1); // PLOT block (not PLOTP)
myPLOT.setNumberOfUserInput(2);
myPLOT.setBP(1,1.0); // BP(1) = Mode
myPLOT.callBlock(1); // Constructor call

iRC = myPLOT.getIP(1);
if (iRC != 0)
{

sprintf(Text,”PLOT constructor call failed”);
LOS0TXT(&Fenster,Text);
return;

}

myGENGD.setBP(1,1.0); // Model: Use the Gordon Reddy model
myGENGD.setBP(2,myMTM.getRP(73)); // Latitude: Is available from MTM
myGENGD.setBP(3,myMTM.getRP(74)); // Longitude: Dito
myGENGD.setBP(4,23.0); // Time zone: We know it, definitely
myGENGD.setBP(5,1.0); // Variance factor: Recommended default
myGENGD.setBP(6,0.0); // No year-to-year variability
myGENGD.setBP(7,0.3); // Recommended default
myGENGD.setBP(8,0.171); // Recommended default = 0.57 * BP4(7)
myGENGD.setBP(9,4711.0); // Initialisation of the random number generator
myGENGD.callBlock(1); // Constructor call
iRC = myGENGD.getIP(1);
if (iRC != 0)
{

sprintf(Text,”GENGD constructor call failed”);
LOS0TXT(&Fenster,Text);
return;

}
for (i = 0; i<= 365; i++)
{

myCLOCK.callBlock(0); // Standard call

Tutorial

11.6. The C++ class CinselBlock 239

myMTM.setIN(1,myCLOCK.getOutput(2));
myMTM.callBlock(0);
myGENGD.setIN(1,myMTM.getOutput(1));
myGENGD.setIN(2,myCLOCK.getOutput(1));
myGENGD.setIN(3,myCLOCK.getOutput(2));
myGENGD.setIN(4,myCLOCK.getOutput(3));
myGENGD.callBlock(0);
myPLOT.setIN(1,(float)i);
myPLOT.setIN(2,myGENGD.getOutput(1));
myPLOT.callBlock(0);

}

myCLOCK.callBlock(2); // Destructor call
myMTM.callBlock(2); // Destructor call
myPLOT.callBlock(2); // Destructor call
myGENGD.callBlock(2); // Destructor call

}

The graphical output is the same as the one on page 233, of course.

Summary q qq q You have seen how the Identification call either in Fortran or C/C++ to any INSEL
block can be used to find information about the block’s memory requirements.q qq q It has been shown how INSEL blocks can be accessed from scratch with a trivial
Fortran program.q qq q The GENGD block has been used to generate a time series of daily radiation data
with a Fortran program which is absolutely independent of the inselEngine.q qq q The wrapper class CinselBlock has been introduced to program a second C/C++
version of the generation of daily radiation time series.

Tutorial

12 :: Programming INSEL blocks

The Module “Programming INSEL blocks” of the INSEL 7 Tutorial started with the
statement “One thing is for sure: this is a heavy Module. What we are trying to show
here is how INSEL can be tailored to your particular needs on a source code level, i. e.,
this Module demonstrates how you can interfere with INSEL with your own code. Not
many programs allow this at all. INSEL does.” Well, INSEL 8 still does, but doing so in
INSEL 8 is now “easy as pie.”

Of course, it is still necessary to have basic skills in a programming language like
Fortran or C, for example – therefore, the Module offers a Fortran crash course for the
novice-programmer student. And, with roundabout one hundred pages, this is the by far
longest and toughest Module of this Tutorial and you will need a lot of patience to work
through it – patience with yourself, patience with the software concepts, and patience
with the here-and-there nerving author.

However, the rest is mainly taken over by wizards, compiler tools, LATEX documentation
routines, and so forth. But, see for yourself, and be prepared...

In order to fully use the programming support in INSEL 8 it is necessary to have theInstallation
requirements following tools installed:q qq q The Java SE development kit (JDK)q qq q The GNU compiler collection (GCC), for example Minimalistic GNU for Windows

(MinGW)q qq q The GNU Fortran compiler (gfortran)q qq q The Ruby programming languageq qq q The Python programming languageq qq q A PDF LATEX compiler installation (preferaby MiKTeX)q qq q Optionally, you may wish to use the integrated development environment Eclipse
IDE. A detailed description of how-to-install-and-use Eclipse can be found in
Module of this Tutorial.

There are at least two possibilities in INSEL 8 to install these tools:

(i) Use the setup program on the INSEL 8 CD.

(ii) Install the individual tools from the setup files on the INSEL 8 Programming
Support CD. Alternatively, you may wish to browse the Internet for the current
versions of the installation programs.

Of course, option (i) is the most convenient but we will briefly go through both options.

Insert the INSEL 8 CD into your computer’s CD drive, browse to the correct directoryOption (i)

241

which corresponds with your operating system (for example win32, if your operating
system is a 32-bit version of Windows or win64 if you use a 64-bit version of Windows)
and start the setup_insel_8.1_SDK.exe executable.

After a welcome screen and the license terms dialog you will be asked to select a
destination directory – usually C:\Program Files\insel 8. If you decide to use the
default directory the tools will be installed to a subdirectory named sdk in the
installation directory.

Next the Select Components dialog will be displayed. now with Eclipse – BILD
AUSTAUSCHEN

If you decide to install the complete SDK about 700 MB of disk space will be required.
Everything except the MiKTeX installation will go to the sdk directory while MiKTeX
will be installed to C:\Program Files\MiKTeX 2.9. The %PATH% variable will be
adapted by the installer. In some cases it might be necessary to restart the computer so
that all programs recognize the changes made in the %PATH% variable.

Before you start to work with the tools it is recommended to check that the following
commands are available in a DOS box:q qq q gfortran --versionq qq q g++ --versionq qq q javac -versionq qq q ruby -vq qq q pdflatex -version

Tutorial

242 12. Programming INSEL blocks

As a result something similar to this screenshot should be visible:

You are ready now to start programming INSEL blocks.

As mentioned above you might prefer to install other or newer versions of Fortran, C,Option (ii)
JDK, Ruby, LATEX than the ones compiled in the INSEL 8 SDK setup installer. The
following webpages will be useful in your search.q qq q gfortran.orgq qq q mingw.orgq qq q java.comq qq q ruby-lang.orgq qq q miktex.org
A few words to programming languages and recommendations. Most of the blocksFortran, C/C++,

etc. which build the calculation kernel of INSEL are written in Fortran 77, while the INSEL
compiler is written in C++ and based on the compiler-compiler tools Flexx and Bison.
Most of the things which deal with user interaction are written in Java or Ruby.

Nevertheless, we recommend, that you write your blocks in Fortran 77.

Why Fortran?

Tutorial

243

Because the good-old-fashioned Fortran dinosaur is still a very powerful and
easy-to-learn programming language for numerical calculations in our view. Large
libraries written in Fortran exist – one of the most important and well known is the
IMSL library, a collection of Fortran subroutines and functions useful in research and
mathematical analysis. With a little experience in computing you can understand and
apply this language in a single day if you concentrate on the essentials.

If you ask, “Why Fortran 77 – I have heard that there is a new Standard called Fortran
95, sounds like there was some progress in language development?” our answer is:

“Keep it simple. For programming of numerics very few statements are required. The
rest makes Fortran more and more look like C++. If you need a powerful language like
C++ for Windows interface programming, for example, then learn C++ and not Fortran.”

If you do not yet know how to write Fortran programs here comes a quick introduction.
When you are already familiar with Fortran programming or intend to use INSEL with a
different language like C or C++ anyway, you can directly proceed to the section
“Programming INSEL blocks (cont.)” on page 277.

Tutorial

244 12. Programming INSEL blocks

Tutorial

12.1. A Fortran crash course 245

12.1 A Fortran crash course

Fortran has been one of the first programming languages which made the step from
Assembler programming to a high-level programming language. The name Fortran
(formerly FORTRAN) stands for “formula translator” which means that the language
was designed for the solution of mathematical problems from the very beginning. In
Fortran 77 the concept of structured programming (which is the basic concept of INSEL)
was introduced. Like writing an essay or a book in a specific language, it depends on the
style of the author, whether the text is readable or not. So from the very beginning you
should put some effort into the development of your programming style. Fortran allows
you to write structured programs or to write some spaghetti code. We try to guide you
to writing structured source code. So let’s go ahead.

The Fortran character set contains the capital letters A to Z, the digits 0 to 9 and theFortran character
set special characters = + - * / () , . \ $ ’ : and the space character. In comments

any other character may be used. However, crashes of software have been observed only
due to the use of some German special characters like ü, for instance. So, be careful and
avoid non-ASCII characters wherever possible. Please notice also that the lower case
letters a to z are not included in the Fortran 77 standard. But every newer compiler
accepts these letters. A purist however would not use them.

Fortran source code underlies strict conventions which are based on the layout of punch
cards, which were used in “historic” ages till the seventies and eighties of the last
century. Probably the younger readers have never had the opportunity to see a punch
card, so here is a picture of one of them.

Punch card

As you can see a punch card has 80 columns (numbered from 1 to 80 and not – like in C
from 0 to 79). Columns 1 to 72 are used for code, while columns 73 to 80 are ignored by a
Fortran 77 compiler. These columns have been used in former times for a systematic

Tutorial

246 12. Programming INSEL blocks

numbering of the cards. Today they are no longer used. The use of columns 1 to 72 is not
free but also underlies certain rules.q qq q Column 1 to 5 are reserved for labels, column one plays a special role: when a

literal constant C is placed in column 1 the Fortran compiler interprets the
corresponding line as comment, i. e., ignores everything written in that record.q qq q Column 6 is reserved for markers of continuation lines.q qq q Columns 7 to 72 are used for Fortran statements.

Labels can have up to five digits, at least one digit must be different from zero. You can
think of labels as statement numbers.

Completely blank lines are treated like comment lines and are ignored by the Fortran
compiler.

When the length of a statement exceeds the available space (column 7 to 72) the
statement can be continued in the next record. In this case a continuation symbol must
be used in column 6 of the continuation line. The symbol can be any symbol of the
Fortran character set, except 0 and blank. We recommend to use the sign & which is not
a Fortran 77 character but is accepted by all compilers as continuation marker.

Between elements of a statement one or more blank characters can be added for better
readability. They are ignored (except in strings or literal constants) by the Fortran
compiler.

12.1.1 The principle form of a Fortran program

In Fortran there is no special end of statement symbol (like ; in C, for example).

A Fortran program always begins with a statement which describes the type of the code.
A main program for example starts with the (optional) statement

PROGRAM name

where name can be any allowed Fortran name, like TEST, for instance. A variable
declaration part follows and then a set of executable statements. The end of a Fortran
program, i. e., the last statement of a program must always be the

END

statement.

Now you know the key elements of a Fortran program – we will soon talk about
different statements. Let us make a first example.

PROGRAM HELLO
PRINT*,”Hello, world!”
END

Tutorial

12.1.1 The principle form of a Fortran program 247

This program prints the string “Hello, world!” on the computer screen. It is not a
Windows program but expects to run in a DOS box or a Terminal where it can write to.

Before you continue, you should copy the program – the text is called source code – andSource code
write a file named hello.f, for example, by using a text editor.

You can use any text editor which is available on the market – and there are plenty. If
you have no text editor at hand, you can use Notepad, which is a simple text editor that
is part of Windows, or TextEdit, which is a similar editor for Mac OS. Please notice that
Microsoft’s Word or Apple’s Pages are programs for typesetting but not for source code
development. In the end you should learn how to use a professional text editor.

For many years, our prefered editor has been Kedit of Mansfield Software Group, Inc.
(www.kedit.com). Unfortunately, it is available for the Windows platform only and in
times of Mac OS, Linux etc...

A candidate now proposed by the INSEL developers is jEdit (www.jedit.org), a
platform-independent Java-based editor.

Whatever editor you use, in the end you should get a file named hello.f (or similar).

The next step is to compile and link the program. What you need to do this is software: aCompiler and
linker Fortran compiler and a linker. Like in the case of a text editor, plenty of compilers for all

kinds of languages are available on the market.

It is probably a good idea to use the gcc (gcc.gnu.org) and gfortran (www.gfortran.org)
open-source compilers, which are most supported by INSEL. Please find out which
Fortran compiler you wish to use and compile and link hello.f.

The compiler will then generate object code in a file called hello.obj or hello.o andObject code and
executable code the linker will generate executable code and write this to a file hello.exe (most typical

under Windows) or just hello or similar. When everything works, you can type hello
at the DOS or terminal prompt, the program HELLO will execute and display
Hello, world! and terminate.

The program does not do much, but once it works you can be sure to have a working
environment.

Tutorial

http://www.kedit.com
http://www.jedit.org
http:/gcc.gnu.org
http:/www.gfortran.org

248 12. Programming INSEL blocks

If you are new to programming, we recommend NOT to continue with the crash course
before you have seen the hello world example running in real.

If you followed our recommendation and have installed gfortran you will end up with
something similar to the following screen:

You can see that by default gfortran names the executable a.exe. If you prefer to give it
a different name you can use the option -ohello.exe, for example (o for output). You
can also see that there is no object code in the directory. If you wish to only compile and
not link the source code you can call the compiler by gfortran -c hello.f and you
will find the object code in the directory.

Before we start with the syntax of the Fortran language, let us recall a few remarks that
have already been made about structured programming earlier in this Tutorial.

In the seventies and eighties programmers started to understand that structuredStructured
programming programming techniques needed to be developed in order to keep software

maintainable. Programmers were challenged to write more transparent programs.

Tutorial

12.1.2 Fortran data types 249

Structured programming was an attempt to restrict software developers to make use
only of three different program structures:q qq q Straight sequences of statements which are executed in linear order. Statements

can either be simple statements or encapsulated collections of statements which
follow the rules of structured programming.q qq q If-then-else statements which allow branching in the code with a definite target
where the two branches come together again, so that the structure can be
regarded as a single kind-of-macro operation.q qq q Iteration loops which allow for the programmatical execution of code in
well-defined repeat structures.

As a consequence of these rules structured program parts have a well-defined andSingle-entry,
single-exit unique entry point and one – and only one – unique exit point. Sometimes this rule is

referred to as the single-entry single-exit principle. This rule restricts very much the use
of a sort of crude statement which allows jumps into any part of the code, the GO TO
statement. In structured programming it is not forbidden to use a GO TO but its use is
restricted to very special local operations – by agreement.

Encapsulation of code is a key idea of structured programming: develop your programs
from simple statements to bigger structures. Some Fortran concepts like FUNCTIONS,
SUBROUTINES help you to follow this concept.

But now it’s time to dive into some of the most the important syntax rules of the
Fortran 77 programming language.

12.1.2 Fortran data types

Like any programming language Fortran has its own set of supported data types. The
most important data types are INTEGER, REAL, DOUBLE PRECISION, LOGICAL, and
CHARACTER.

All variables that are used by a program should be declared in the declaration part of the
program. Fortran has some rules which implicitly relate variables to specific data types
by default. This may seem practical because it releases you from having to declare all
variables that you use. But experience shows that this property of the Fortran language
can give you a real tough time sometimes, in particular in error detection. We
recommend to just forget this property and add to ALL your Fortran programs the
statement

IMPLICIT NONE

following either the PROGRAM statement or any other code type statement, like
FUNCTION. . . or SUBROUTINE. . .When you use an IMPLICIT NONE statement the Fortran
compiler does not accept any variables that are not declared and this makes code
development much safer.

Tutorial

250 12. Programming INSEL blocks

So now the question is “What is the difference between the several data types and how
can I declare them?” Let us first look at the principle difference.q qq q INTEGER variables are used for the set of integers, i. e., 0, ±1, ±2 etc. The

minimum and maximum value an INTEGER variable depends on the size of the
variable in the computer’s memory. Usually four bytes represent an INTEGER
variable. In this case the possible range is from −2147483648 to +2147483647.q qq q REAL variables can represent any real number. The accuracy of a REAL number
depends on the number of bytes which represent the REAL number in the
computer’s memory – four bytes, i. e., 32 bits is today’s most common size, the
trend is towards 64 bits, i. e., 8 bytes. A four byte REAL covers the range from
−3.402823E+38 to +3.402823E+38. Please notice that the number of significant
digits is about 7, which is not very accurate and can lead to numerical problems in
sensitive iterations.q qq q DOUBLE PRECISION variables are similar to the REAL type but use twice the
number of bytes of REAL variables for the representation of the current value.
Their significant number of digits is of order 15, the numbers cover a range from
−10308 to +10308.q qq q LOGICAL is a boolean data type which can have one of two values only, either it is
TRUE (1) or FALSE (0).q qq q The CHARACTER data type is used for alphanumerical strings.

We have used the string “Hello, world!” already in our first Fortran program. But weLiteral constants
used it as a constant value – a so-called literal constant – not as a variable CHARACTER
data type.

There are more data types available in the Fortran 77 standard, but we will concentrate
on the mentioned ones – and you will see that you can probably solve more than 99.9
percent of your numerical problems with these data types – this “statement” depends a
little on your level of computing experience, of course.

Now that we know which data types are important, let’s have a look at how can they be
declared and used. We have seen that Fortran is a very formal language in the sense that
it has clear rules about the format of every source code line. Since statements must be
written in the range of column 7 to 72, the declaration of variables also starts in column
7. The mentioned data types can be declared by statements – starting in column 7 – like

INTEGER I1, I2
REAL R1, R2
DOUBLE PRECISION D1, D2
LOGICAL L1, L2
CHARACTER*80 C1, C2

INTEGER, REAL, DOUBLE PRECISION, LOGICAL, and CHARACTER are key words since they
form basic elements of the programming language Fortran. I1, I2, R1, R2, D1, D2, L1, L2,

Tutorial

12.1.2 Fortran data types 251

C1, and C2 are variable names and are all valid. There are rules for names: A name (in
strict Fortran 77) cannot have more than 6 characters (all newer Fortran compilers
accept longer names) and the first character may not be a digit, i. e., 1TEST would not be
a valid name for a Fortran variable name but TEST1 would be valid.

You cannot rely on the idea that all declared variables automatically have a reasonableInitial values
initial value. Some (most) compilers initialise declared variables with a value zero or
blank (in the CHARACTER case) but in the end it is up to you to ensure that the variables
have reasonable values at any time.

One simple method to initialise variables is to include an initial value in the statement
which declares a variable. If for example you modify the above example and write

INTEGER I1 /0/, I2 /0/
REAL R1 /0.0/, R2 /0.0/
DOUBLE PRECISION D1 /0.0/, D2 /0.0/
LOGICAL L1 /.FALSE./, L2 /.FALSE./
CHARACTER*80 C1 /” ”/, C2 /” ”/

you can be sure – independent of any compiler’s behavior – that your numerical
variables are initialised by zero, the logical variables are initialised with 0 (false – please
observe that Fortran uses dots for logicals like .TRUE. and .FALSE.) and the CHARACTER
strings are initialised with a blank.

All the data declared in the example can be used as variables, i. e., their values can be
changed during the execution of the program where they are used. If you want to define
constants which cannot be changed – by accident for example – during program
execution you can declare them as PARAMETER. The corresponding statement is

PARAMETER (name1=value1, name2=value2)

In this case the variables name1 and name2 are initialised by value1 and value2,
respectively, but it is impossible to change the values of name1 or name2 during program
execution. It is necessary to declare the variables name1 and name2 before the
PARAMETER statement. For example,

REAL PI, KELVIN
PARAMETER (PI = 3.14159265, KELVIN = 273.15)

All declared variables can be either scalar (like we have declared all of them) or have aVectors
dimension greater than zero. In order to declare one-dimensional vectors with ten
elements, for example, we can simply write

INTEGER I(10)
REAL R(10)
DOUBLE PRECISION D(10)
LOGICAL L(10)
CHARACTER*80 C(10)

We can then access the variables via their index like I(1), I(2), ... I(10), for example.

Tutorial

252 12. Programming INSEL blocks

Two dimensional variables could be declared as

INTEGER I(10,10)
REAL R(10,10)
DOUBLE PRECISION D(10,10)
LOGICAL L(10,10)
CHARACTER*80 C(10,10)

definining 10× 10 matrices of INTEGERs, REALs, and so forth. It should be obvious how
the elements can be accessed in this case.

The next question is “How can we change the values of a variable programmatically?.”Set operations
The answer is, by using a set operation. Set operations look like equations: on the left
side of the equation we get the result, on the right side of the equation we write the
operation.

A statement like

I1 = I1 + 1

will perhaps surprise you when you have never seen such code before. Mathematically
spoken, the equation is complete nonsense: How can I1 be equal to I1 + 1? –
impossible. In Fortran (and most other programming languages) I1 = I1 + 1 means:
Well, before the operation I1 has a value, let’s say zero. The statement I1 = I1 + 1
then means, take the value of I1, add 1 to it and save it under the name I1 again. This
means, that if I1 had a value zero before the execution of the statement I1 = I1 + 1
then I1 will have a value of one after excution of the statement. Some programming
languages express this as I1 <- I1 + 1, or I1++ or similar, but they all mean the same
operation: Add one to the current value of the INTEGER variable I1.

Now we know, how we can define variables, how to initialise them, and how to performBasic operations
basic operations with them like add

I1 = I1 + I2

or subtract

I1 = 1
I2 = 2
I1 = I1 - I2

multiply

R1 = 1.5
R2 = 2.5
R1 = R1 * R2

or divide

R1 = 1.5
R2 = 2.5
R1 = R1 / R2

Tutorial

12.1.2 Fortran data types 253

or exponentiate

R1 = 1.5
R2 = 2.5
R1 = R1 ** R2

numerical Fortran variables. With variables of type LOGICAL or CHARACTER these
numerical operations are not possible.

The division example shows the first danger already: What happens for example if R2 isDivision by zero
equal to zero? It is most probable that the operating system generates and error message
like “Exception error: Divison by zero” and terminates the execution of the program. We
will in a few moments see how this behavior can be avoided.

What if we mix the basic operations in one expression like

D1 = I1 + I2 * R1 ** R2

Then the sequence of operations – and hence the result D1 – depends on the “order” of
the operator. This order in Fortran is the natural order: ** highest, then * and /, then +
and -, then from left to right. As in school mathematics the order can be changed by
using parentheses
(. . .).

Hence, the above statement D1 = I1 + I2 * R1 ** R2 is equivalent to
D1 = I1 + (I2 * (R1 ** R2)).

The + and the - symbols have two meanings: they represent operations of adding and
subtracting and they can be used as signs. In this case too, the higher order operator is
executed first, i. e., D1 = -R1 ** R2 is equivalent to D1 = -(R1 ** R2).

Generally spoken, all the above statements have the form

variableName = expression

If variableName on the left side is a numerical data type like INTEGER, REAL, or
DOUBLE PRECISION then expression must evaluate to a numerical value. For variable
names with type LOGICAL the statement must result in either .TRUE. or .FALSE., and if
variableName is a CHARACTER then expression must evaluate to a CHARACTER.

The expression can mix different numerical data type variables. In this case before the
operating system performs an operation the variable of lower order is converted to the
data type of the other operand with higher order. For the statement
D1 = I1 + I2 * R1 ** R2 this means that at first R1 ** R2 is calculated – both have
the same data type, no problem – then I2 is multiplied by the result of R1 ** R2 – since
I1 is an INTEGER and the result R1 ** R2 is a REAL before the operation I1 is converted
to a REAL variable – and so on. The result will be a REAL variable but shall be stored in
the DOUBLE PRECISION variable D1, so that the result is converted to DOUBLE PRECISION
automatically. One exception to this rule is that if an exponent is of type INTEGER and

Tutorial

254 12. Programming INSEL blocks

the operand is of any other numerical type then no conversion of the INTEGER will be
made.

Okay. So far we can define some variables, perform some basic operations on them andCONTINUE,
PAUSE, STOP show some values of the computer’s screen. That means we can make sequences of

statements. To complete the sequence structure there are three more statements which
do not allow any branching in the program. The first is the

CONTINUE

statement. It does nothing but continue, which means that execution will continue with
the next statement in the sequence. It is good programming style to use a CONTINUE
statement together with labels (see later). The second statement is the

PAUSE x

statement. In this case program execution will pause and x will be displayed on screen –
x can either be an integer in the range of 0 to 99999 or x can be a string like “We have
paused the program xy”

When program execution is paused the program can only be continued by a user, who
can press any key of the keyboard to continue. The last of the three statements is the

STOP x

statement, which acts like the PAUSE statement in displaying but which terminates the
program execution like the END statement we have already used earlier.

Write some code which declares and initialise some variables, perform some operationsExercise 12.1
with the data, display some results via the PRINT statement (PRINT *,list accepts a
list of data which can have any data type – the elements in the list must be separated
by a comma).

We used this code to test what we wrote:

PROGRAM NONSENSE
C We follow our teachers and use

IMPLICIT NONE

C Now we declare some variables
INTEGER I1 /0/, I2 /0/
REAL R1 /0.0/, R2 /0.0/
CHARACTER*80 STRING /’ ’/

C And now we do some nonsense
I1 = 2
PRINT *,’Our vaiable I1 is now equal to ’,I1
I2 = 3
PRINT *,’Our vaiable I2 is now equal to ’,I2
I1 = I1 * I2
PRINT *,’Our vaiable I1 is now equal to ’,I1

Tutorial

12.1.3 If-Then-Else structures 255

PAUSE 1

C And now the same with reals
R1 = 2.0
PRINT *,’Our vaiable R1 is now equal to ’,R1
R2 = 3.0
PRINT *,’Our vaiable R2 is now equal to ’,R2
R1 = R1 * R2
PRINT *,’Our vaiable R1 is now equal to ’,R1

PAUSE 2

C Enough
STRING = ’Enough. We are keen to continue with some new stuff.’
PRINT *,STRING

STOP 3
END

This is the screen shot after completing the program.Result

12.1.3 If-Then-Else structures

As the name of this section points out already the most typical statement of the
if-then-else structure is the if-then-else statement. Its most important form is

IF (condition) THEN
expression1

ELSE
expression2

END IF

Here, condition must evaluate to a LOGICAL which is either .TRUE. or .FALSE. and
expression1 and expression2 can be any set of structured statements, i. e., both
expressions can use sequence structures, if-then-else structures and the later discussed
loop structures. We start with the condition first.

Tutorial

256 12. Programming INSEL blocks

Conditions are always based on logical comparisons, like equal, not equal, greater than,Conditions
less than, and so on. Logical comparisons can be combined with logical operators like
and, or, and so forth.

In Fortran there are six comparison operators

.EQ.

.NE.

.GT.

.GE.

.LT.

.LE.

with the meanings .EQ. = equal, .NE. = not equal, .GT. = greater than, .GE. = greater
or equal, .LT. = less than, and .LE. = less or equal.

Comparisons have the general form

expressionA operator expressionB

The expressions can be either both numerical or both textual.

As a first example let us come back to the above mentioned problem of division by zero.

R1 = 1.5
R2 = 2.5
IF (R2 .NE. 0.0) THEN

R1 = R1 / R2
ELSE

PRINT *,”Hoppla, divion by zero.”
PRINT *,”Our way out: we do nothing”

END IF

Here of course, we know that R2 cannot be equal to zero, but – the example should be
self-explaining.

Please notice, how we “pretty-print” our source code: whenever a branching statement
like IF occurs the following text is indented by three bytes – some programmers prefer
two or four bytes. When expression1 is complete we move back three bytes to the
previous position, the next expression is completely indented three bytes again, and so
forth. I have seen many people write the same code in such a shape:

R1=1.5
R2=2.5
IF(R2.NE.0.0)THEN
R1=R1/R2
ELSE
PRINT*,”Hoppla, divion by zero.”
PRINT*,”Our way out: we do nothing”
ENDIF

Tutorial

12.1.3 If-Then-Else structures 257

It’s right, the program does the same, but I personally get a goose skin when I see code
like this. To me it appears like the type setter hands out a wonderful book like “The
Master and Margarita” of Michail Bulgakov without using spaces.

At the end of this crash course we have collected some guidelines which we suggest to
follow in pretty-printing.

There are three more types of the IF statement which are used frequently. All of them
do not provide anything really new but could also be expressed with the above
introduced if-then-else structure. We mention them briefly, anyway.

The first is useful in very simple cases, i. e., when only one statement depends on the
condition. The general form is then

IF (condition) statement

which means if the condition is .TRUE. the statement will be executed, otherwise not.
Please notice that this statement is equivalent to writing

IF (condition) THEN
statement

END IF

which we prefer.

The second type of IF statement is useful when one out of several options is to be
chosen. The general form is

IF (condition1) THEN
expression1

ELSE IF (condition2) THEN
expression2

ELSE IF (condition3) THEN
expression3

ELSE
expression4

END IF

Meaning and use of the statement should be self-explaining. This form is preferable to
the equivalent form

IF (condition1) THEN
expression1

ELSE
IF (condition2) THEN

expression2
ELSE

IF (condition3) THEN
expression3

ELSE
expression4

END IF
END IF

Tutorial

258 12. Programming INSEL blocks

END IF

Please notice the different use of the END IFs. The third form is something rather
different, it defines a so-called arithmetic GO TO statement. The simple GO TO statement
– you remember, a statement which should be used very carefully – is

GO TO label

When such a statement appears in the source code the program continues execution at
the specified label.

Labels have been mentioned previously, but now let us look at their meaning. A label, asLabels
we have heard already, by definition is a number in the first five columns of a source
code record with a value between 1 and 99999 – a label number must be unique in a
program unit, so it can be used only once. As we have also heard before, a labeled record
should always have only a CONTINUE statement. Hence, a labeled record has the form

123 CONTINUE

where 123 is an example for a label.

In this example, when the program executes the statementGO TO

GO TO 123

it continues execution at the statement labeled 123. It should be clear, that by making
extensive use of such jumps it is possible to write absolutely unreadable spaghetti code.
Hence try to avoid GO TO statements wherever you can.

To return to the third type of branching IF statements, the definition of the arithmetic
GO TO statement is

GO TO (label1, label2, ... labelN) I

Here I is an integer greater than zero (it is possible that I is an expression which
evaluates to an integer greater than zero). When I is or evaluates to a value one,
program execution branches to label1, when I is or evaluates to a value two, program
execution branches to label2, and so forth.

You may ask, what happens if I is greater than N or less than one. In the documentation
of your Fortran compiler – I’m sure you’ll find the answer – but we recommend that you
simply don’t let this happen, i. e., write your own code like

IF (I .GE. 1 .AND. I .LE. 5) THEN
GO TO (1,2,3,4,5) I

ELSE
STOP ”BLUNDER in program part...”

END IF
1 CONTINUE
C ...
2 CONTINUE

Tutorial

12.1.3 If-Then-Else structures 259

C ...
C et cetera

In Fortran there are some even more adventure-like statements, for example one where
the adress to be jumped to can be calculated. Please, ignore them, do no even look at
them, concentrate on valuable things. Write program branching statements in your code
with the explained options – there is absolutely no need for more IF or GO TO
statements.

But one last group of statements is definitively important, that of loops. This, afterLoops
having discussed sequence and if-then-else structures is the last required concept in
programming. Once you are fond of making use of sequential structures, if-then-else
structures, and loop structures, you can solve any numerical problem – from the
programming language point of view – that will ever exist. This has been proven in a
very general way and published in a paper by the father of the structured programming
concept Edsger W. Dijkstra.

Imagine, you want to write a program which counts from 1 to 10 and displays the
numbers on screen, lets call it the 1-to-10 example. We could write a trivial program like

PROGRAM ONE2TEN
IMPLICIT NONE
INTEGER I
I = 1
PRINT *,I
I = 2
PRINT *,I
I = 3
PRINT *,I
I = 4
PRINT *,I
I = 5
PRINT *,I
I = 6
PRINT *,I
I = 7
PRINT *,I
I = 8
PRINT *,I
I = 9
PRINT *,I
I = 10
PRINT *,I
STOP
END

There is a statement which automises this idea – the DO statement. For the example weDO statement
could use

DO I = 1,10,1
PRINT *,I

Tutorial

260 12. Programming INSEL blocks

END DO

In general form the statement is

DO I = startValue, finalValue [, increment]
expression

END DO

where startValue is a numerical value for the first execution of the loop, on every call
the loop variable – I in this case – is incremented by the given increment (the
increment is optional – when it is omitted it defaults to 1) and set to the current value.
The loop runs for the last time when the final value is reached and then stops. Please
find out what the value of I is after the loop finished (PRINT statement after the END DO)
and try to imagine how the DO statement works internally.

Notice again, that we use the DO keyword to indent the affected records by three bytes in
our pretty-printing, too, and that the END DO returns back to the last used column.

Of course, startValue, finalValue, and increment can be of any reasonable
numerical data type, like INTEGER, REAL, or DOUBLE PRECISION.

Fortran 77 does not support other DO constructions, but the DO WHILE structure isDO WHILE
statement supported by almost all Fortran compilers and can be included in structured program

code. The Fortran language specifications (later than 1977) say that a
DO WHILE statement has the general form

DO WHILE (condition)
expression

END DO

Here, condition can be any logical condition which evaluates to a LOGICAL. As long as
condition is .TRUE. the DO loop is executed, when condition is .FALSE. the DO loop is
terminated and program execution continues with the next executable statement
following the END DO. Please notice, that the condition is evaluated before a DO loop
cycle is initiated.

As an example for the DO WHILE statement let us formulate the 1-to-10 example with it.Exercise 12.2
Maybe you’d like to try on your own, before you look at our code.

Solution

PROGRAM DOWHILE
IMPLICIT NONE
INTEGER I
LOGICAL COND
I = 1
COND = .TRUE.
DO WHILE (COND)

PRINT *,I
IF (I .LT. 10) THEN

I = I + 1

Tutorial

12.1.3 If-Then-Else structures 261

ELSE
COND = .FALSE.

END IF
END DO
STOP
END

Two statements related to DO WHILE loops are importrant to know: the EXIT and theEXIT and CYCLE
CYCLE statement. When you want to immediately jump completely out of a DO loop for
some reason, you can use the EXIT statement. The CYCLE statement allows you to jump
to the END DO statement and next incremented value (if any is left) without terminating
the loop.

Now you know enough about Fortran programming that you can – in principle – solve
all numerical computer problems. Maybe you will be surprised, but in our view Fortran
is that simple. It is a language which can be learnt in one day. But so far we were mostly
concerned with reading Fortran. What about writing Fortran? When you really want to
write Fortran you need to practise and solve more complex problems than just counting
from one to ten – this is nice for a teaching course, but is toy ground.

The best way to become familiar with all the formal stuff is to solve a more complexPractise!
problem from scratch. Maybe you are currently working on a new component model of
some I-don’t-know machine. Then feel lucky to develop and implement your ideas in a
Fortran program – best practise.

When you have no such problem, but are in the lucky situation of having a spare day or
two days extra time, maybe you try to solve the “eight-queens-problem” with a Fortran
program – this was actually the way the INSEL author learnt programming at the
University of Frankfurt in Germany in the late seventies.

Can you imagine what programming at a German university meant in the lateAnecdote
nineteen-seventies?

Students got a pack of punch cards and went to a punch card machine. Via a keyboard
the machine punched some rectangular holes into the punch card – one set of holes in
the current column per key stroke. At the end of the writing-a-program process the
student took his pack of punch cards, put it into a mailbox (hardware!) of the computer
center and the next day! found some endless paper print out in a book shelf with
whatever was programmed in the punch card pack – a printout of the source code and
what was thought might be the solution to the eight-queens-problem. And when there
was (at least) one little mistake? A lost day, find the error and try again for tomorrow,
that was the “debugging experience” - tough.

You don’t know what the eight-queens-problem is?

Think of a chess board which has eight-by-eight squares. A chess queen can move anyEight-queens
problem number of vacant squares, horizontally, vertically, or diagonally. Whenever there is

some other chess piece on one of the reachable squares it can be captured. The

Tutorial

262 12. Programming INSEL blocks

eight-queens-problem is to place eight chess queens on a chess board so that no queen
can capture any other queen. As far as I remember there are 92 solutions.

By the way, finding even one single solution on a real chess board without the help of a
computer program is rather difficult – try it!

We are now almost through with our crash course through Fortran and its programming
concepts – fair enough, we should say with what we think are the essential
programming concepts. Now those of you who know more about programming will
probably protest:q qq q What? We learnt nothing about input/output handling but the simple PRINT

statement.q qq q Our programs will be much more complex than this simple stuff and will consist
of a collection of units. We want to exchange data between these units and Fortran
has some data exchange concepts like COMMON blocks and BLOCK DATA. We have
heard nothing about them.q qq q This space is intentionally left free . . .

Yes, you are all right. But here comes our but:

The aim of this Fortran course is not to let you develop applications from scratch but
tries to guide you through the concepts of the simulation environment INSEL.

INSEL provides blocks for input/output operations. There is no need for an INSEL user,Input and output
nor for an INSEL programmer who works on the level of source code development to
implement basic input/output operations. Input is handled completely by INSEL, i. e.,
INSEL is responsible for data input. For the advanced INSEL programmer there is some
information about input/output and file handling in the section Advanced INSEL block
programming.

The only thing with which you will be confronted as someone who wants to write
INSEL extensions or new blocks is the question how output data like error messages can
be generated.

INSEL as an integrated simulation environment provides a concept for error handling –Error handling
the INSEL message system. In this Module you will learn how you can communicate
with this message system. We hope that this concept satisfies all your needs for
input/output communication.

The second point is that we want you to work in the INSEL environment, i. e., you shall
not feel left alone but guided. In the ideal case, you shall just not have to write complex
solutions but just some fixes for situations where you feel that INSEL as it is is not
perfectly tailored to your requirements.

INSEL provides a well-defined interface which is based on Fortran’s
SUBROUTINE concept. In a few moments we will explain how Fortran subroutines can be

Tutorial

12.1.4 Structuring program projects 263

used and how the interface looks like.

12.1.4 Structuring program projects

One of the key concepts in structured programming is the top-down development of
code. It is a method where one complex problem is split up into several smaller
problems. These part problems then are split again so that at the end of the chain code
can be written for those relatively lower level problems. All structured programming
languages provide concepts for top-down development and conventions for smaller code
units which can be used as solutions to partial problems. The units are usually called
procedures. In the end a complex problem solution will consist of many procedures
which altogether form the final program.

Fortran knows four types of procedures:q qq q Intrinsic functionsq qq q Statement functionsq qq q External functionsq qq q Subroutines
Intrinsic functions are already included in the Fortran language standard. They provideIntrinsic functions
functions for type conversion, arithmetic functions, mathematical functions, and
CHARACTER functions.

All functions must have a specific type like INTEGER, REAL, DOUBLE PRECISION,
LOGICAL, or CHARACTER, for example, and they will return a value of that data type. We
list some of the most important intrinsic functions now – for a complete overview
please refer to your Fortran compiler’s reference manual.

Converts a REAL or DOUBLE PRECISION variable x into an INTEGER without rounding,INT(x)
i. e., the decimal fraction is cut off.

Converts an INTEGER or DOUBLE PRECISION variable x into a REAL.REAL(x)
Converts an INTEGER variable x into a REAL.FLOAT(x)
Converts an INTEGER or REAL variable x into a DOUBLE PRECISION.DBLE(x)
Returns the absolute value of an INTEGER or REAL variable.ABS(x)
Returns the rounded INTEGER value of a REAL variable x.ANINT(x)
Returns the sqaure root of a REAL variable x.SQRT(x)
Returns the arc cosine of a REAL variable x.ACOS(x)
Returns the arc sine of a REAL variable x.ASIN(x)
Returns the arc tangent of a REAL variable x.ATAN(x)

Tutorial

264 12. Programming INSEL blocks

Returns the cosine of a REAL variable x.COS(x)
Returns the hyperbolic cosine of a REAL variable x.COSH(x)
Returns the exponential function exp(x) of a REAL variable x.EXP(x)
Returns the natural (base e) logarithm of a REAL variable x.LOG(x)
Returns the decade (base 10) logarithm of a REAL variable x.LOG10(x)
Returns the sine of a REAL variable x.SIN(x)
Returns the hyperbolic sine of a REAL variable x.SINH(x)
Returns the tangent of a REAL variable x.TAN(x)
Returns the hyperbolic tangent of a REAL variable x.TANH(x)
Statement functions have the general formStatement

functions
name(parameter) = formula

where parameter is a list of one or more variable names, separated by commas. These
variables can then be used in a formula to calculate the value of the variable name, which
must be defined in the decalartion section of the unit before the statement function. The
formula may use only one statement.

An example for the theorem of Pythagoras would be

REAL A,B,HYPO
HYPO(A,B) = SQRT(A**2 + B**2)

where A and B would be the side lenths of a right triangle, and HYPO would be the length
of the hypotenuse.

Statement function may only be used in the program unit where they are defined.

External functions are formulated as separate program units and can be compiledExternal functions
individually. They can be called by any other program unit. The first statment of an
external function specifies the type of the program. So far, we have only worked with
program units of type PROGRAM.

The first statement of an external function has the general form

type FUNCTION name(parameterList)

where type specifies the type of the return value of the function, INTEGER or REAL, for
instance, name defines the name under which the function can be called then. At the
same time a variable of type type named name is defined. A value must be assigned to
this variable in the function, this value is the return value of the function then. Hence, a
function returns exactly one value – the function value.

Tutorial

12.1.4 Structuring program projects 265

The parameterList in parentheses consists of variable names, separated by commas.
The list can be empty, but the parentheses may not be omitted.

The code of the FUNCTION is equivalent to that of a PROGRAM unit – it has a declaration
section (again, the first statement should be the IMPLICIT NONE statement), followed by
a number of exectutable statements. The last statements must be a RETURN and an END
statement. The RETURN statement causes the program to return to the calling program,
while the END statement signals the end of the program unit to the compiler.

Subroutines can return more than one value. Actually, they can exchange an arbitrarySubroutines
number of variables between the calling program and the called program, i. e., the
subroutine. Similar to a FUNCTION, a SUBROUTINE starts with a statement which declares
the type of the program unit. The general form of a subroutine type statement is

SUBROUTINE name(parameterList)

The variable name fixes the name of the routine, parameterList stands for the list of
parameters, again separated by commas. The term (parameterList) is usually called
the subroutines interface. While a FUNCTION could be used in a calling programm just by
the FUNCTION name, calling a SUBROUTINE requires a CALL statement of the form

CALL name(parameterList)

where name is the name of the SUBROUINE and parameterList is a list of variables as
expected by the subroutine.

The structure of a subroutine is as usual: unit declaration, IMPLICIT NONE statement,
variable declarations, executable statements, and end with a RETURN statement and an
END statement.

Fortran distiguishes strictly between functions and subroutines. However, nowadays it
is common practise to think of a function as a function which returns a value, while a
subroutine is a function which does not return a value – all matter of taste.

Puhh! After this little tough bit of theory it’s time for some explaining examples.

The use of the intrinsic functions should be ovious. If, for example you want to use theExample intrinsic
function square root of a variable X in a statement, the code looks like

LEFT = BLABLA + SQRT(X) - DINGS

So, we start with a second statement function for the conversion of temperature dataExample statement
function from degrees Celsius to Kelvin. If we assume a temperature value TC is given in degrees

Celsius then we would like to calculate the corresponding value in kelvin. The formula
is simple

TK = TC + 273.15

First, we need a name for the function – how about TK? The only required parameter is
the temperature in degrees Celsius TC. So, the statement function is expressed as

Tutorial

266 12. Programming INSEL blocks

TK(TC) = TC + 273.15

Write a small program which makes use of this statement function.Exercise 12.3

We wrote this one:Solution

PROGRAM TC2TK
REAL TC,TK
TK(TC) = TC + 273.15
DO TC = 0.0,100.0,10.0

PRINT *,TC,TK(TC)
END DO
STOP
END

resulting in the obvious output

Statement functions are not often used, because their main drawback is that they can
only be used locally in a program unit. If another program unit wants to make use of the
same statement function, a new definition of the statement function is required.

A more general way is to use a FUNCTION – as we have learnt, a FUNCTION can be usedFUNCTIONs
from all other program units without redefinition (assuming that it is “linked” to the
executable – we come back to this point in a minute).

Implement the above example statement function in a separate Fortran function andExercise 12.4
compile it.

Our solution is:Solution

REAL FUNCTION FUNTC2TK(TC)
IMPLICIT NONE
REAL TC
FUNTC2TK = TC + 273.15
RETURN
END

We saved our code in a file named funTc2Tk.f. And now let’s see how we can use our
function from another program unit.

Writing the calling code is straight forward.

PROGRAM USETC2TK
IMPLICIT NONE
REAL TC,FUNTC2TK
DO TC = 0.0,100.0,10.0

PRINT *,FUNTC2TK(TC)
END DO
STOP
END

Again, we gave the file the same name that we used for the function, hence called it
useTc2Tk.f. This can be regarded as a general recommendation to follow, since it

Tutorial

12.1.4 Structuring program projects 267

makes it very clear that the file named useTc2Tk.f contains a program named
USETC2TK. But please keep in mind that the two names are completely independent –
one is the file name and the other one is the program name.

If we try to compile and link useTc2Tk in the usual way, we get an error message that
the symbol TC2TK is missing. What happens?

When you study the Fortran code in file useTc2Tk.f and compile it only (e. g., using the
command gfortran -c useTC2TK.f) you will recognize that the compiler is
completely satisfied with the code, i. e., understands that we want to use a FUNCTION
named TC2TK and leaves it up to the linker to locate the function. But how shall the
linker find the function? We have to “tell” it, where the function resides – namely in the
file funTc2Tk.o. So the command line which generates the executable useTC2TK.exe
looks like

gfortran useTc2Tk.f funtc2tk.o -ouseTc2Tk.exe

assuming that you have already compiled funTc2Tk.f.

Maybe you have recognized that we were not very straight with the use of lower-caseCase sensitive vs.
not case sensitive and upper-case letters. In our case it does not matter very much, since Fortran and

Windows both are not case sensitive. But it is a bad habit to mix cases – like we do
sometimes – because other operating systems like Linux, for example, are case-sensitive
so that useTc2Tk.f and useTC2TK.f are really two different file names.

Re-writing our conversion function FUNTC2TK in a SUBROUTINE is not difficult now.

SUBROUTINE SUBTC2TK(TC,TK)
IMPLICIT NONE
REAL TC,TK
TK = TC + 273.15
RETURN
END

As calling program we used

PROGRAM CALLTC2TK
IMPLICIT NONE
REAL TC,TK
DO TC = 0.0,100.0,10.0

CALL SUBTC2TK(TC,TK)
PRINT *,TC,TK

END DO
STOP
END

and compiled and linked it analogue to funTc2Tk.

We like to conclude this Fortran crash course with a few remarks on the use ofRemarks
subroutines and a set of exercises that you may or may not work out. Solutions will be
provides in a separate section.

Tutorial

268 12. Programming INSEL blocks

Remark 1 : CALL and SUBROUTINE interface must fit

Let us come back to the interface of subroutine SUBTC2TK.
SUBROUTINE SUBTC2TK(TC,TK)

The interface consists of two variables named TC and TK. In the declaration part TC and
TK are both declared as REAL variables.

We have used the subroutine by a CALL statement from a calling program named
CALLTC2TK with the statement

CALL SUBTC2TK(TC,TK)

In the declaration part of the calling program TC and TK were both declared as REAL
variables.

So, both for the calling program and the called subroutine we used exactly the same data
types and even exactly the same names. As we have seen, we could compile the calling
program independent of the subroutine without errors. But how does the Fortran
compiler know how the interface to the subroutine is defined?

The answer is: The Fortran compiler doesn’t know anything about the interface of theDangerous
subroutine. It compiles the call as implemented. It is up to you to ensure that the call and
the subroutine fit together. And this means, that both in the call and in the subroutine
the parameters must exactly be of the same number, order, and type. This can be a
terrible source for errors. So – be careful, very careful!

Concerning the names, they can be different. So you may call subroutine SUBTC2TK with
the CALL statement

CALL SUBTC2TK(MYTC,MYTK)

for example, presumed you have declared the variables MYTC and MYTK as REAL, of course.

Remark 2 : Call by reference

When we used the program CALLTC2TK we could observe that we have set TC to a value,
“handed the value over” to the subroutine SUBTC2TK, which could use the actual value,
perform an operation with it and returned the result in another variable named TK,
which the calling program could access and display via a PRINT statement. Does this
mean that there are four REAL values in total: TC in the calling program, TC in the called
program, TK in the calling program and TK in the called program? The answer is: No,
both variables exist only once in the computer’s memory.

So we should better not say “handed the value over,” but say “handed the variable over”
to the subroutine SUBTC2TK, or – even better – “handed a pointer to the variable over” to
the subroutine SUBTC2TK. You ask yourself what a pointer is? A pointer is a memory
address, i. e., the address where a specific variable or an array of variables resides. As a

Tutorial

12.1.4 Structuring program projects 269

result, if you want to hand over a complete array of variables to a subroutine, lets say a
REAL X(10) vector, it is suffucient to (i) either use the name of the vector like
CALL ...(X), or – which is absolutely equivalent (ii) use the first element of the vector
and write CALL...(X(1)). Both calls are equivalent because both the vector X and the
element X(1) start at the same address in memory.

This calling method is named “call by reference.”

Remark 3 : Dangerous consequence

Let us look at an example which demonstrates one of the dangerous traps of Fortran’s
consequent call by reference.

PROGRAM DANGER
IMPLICIT NONE
REAL NULL /0.0/
PRINT *,’NULL is now’,NULL
CALL SETFIVE(0.0)
NULL = 0.0
PRINT *,’NULL is now’,NULL
STOP
END

SUBROUTINE SETFIVE(X)
C This Subroutine sets the variable X to a value of 5.
C Nothing else.

IMPLICIT NONE
REAL X
X = 5.0
RETURN
END

This program – we named it danger.f – shows two new aspects of Fortran subroutines.danger.f
(i) Main program unit and subroutine may reside in the same file, so that the both
program and subroutine can be compiled and linked via
gfortran danger.f -odanger.exe, and (ii) it is possible to hand over “constants” to

subroutines.

The program itself is primitive. The main program DANGER defines a REAL variable NULL
and initialises it with zero. From the next statement we expect to see an output line
similar to Null is now 0.0.

Then we call the subroutine SETFIVE with the constant 0.0 as parameter. The
subroutine SETFIVE(X) sets X equal to five (remember: X is a pointer to the constant 0.0
– so this operation is really stupid). Returning back to the main program, we set NULL
equal to 0.0 again and display the value of NULL before our program stops.

What do you expect to happen?

When you compile the program with the Salford compiler the ouput is

Tutorial

270 12. Programming INSEL blocks

This seems to be what we expected on the first sight.

When you compile the program with the GNU Fortran compiler the ouput is a
well-known window under Windows:

When I compiled this program on an IBM mainframe computer (many years ago) the
result was

NULL is now 0.0
NULL is now 5.0

Do you believe it? What happens?

The blunder is obviously the fact that we hand over a constant 0.0 and change its value
in a subroutine. What does call-by-reference mean consequently? Hand over the address
of the variable – i. e., the address which points to the constant 0.0, the subroutine
changes the contents at this address to a value 5.0, the next statement NULL = 0.0
copies the content of the address where the constant 0.0 is stored (which has a value
5.0 now), and so the second print comes out as indicated.

You can consider this example as an intelligence test for your compiler, but what is
much more important:

AVOID under any circumstances to hand over constants to subroutines or functions!!! It
is seducing sometimes, but we recommend to avoid it.

Remark 4 : Local variables are memorised from one call to the next

In programming languages like C/C++ the programmer has an infinite number of
options to make programs unreadable for the less-experienced source code reader. For
instance, the parameters of functions can be handed over by value or by reference,
variables can be static or not, there are pointers, pointers to pointers, references, address
operators and many, many, many other things. In Fortran things are much easier – of
course, with the drawback of less flexibility but the huge advantage of the option to

Tutorial

12.1.4 Structuring program projects 271

learn the language like you did, just in a few hours. And for numerical simulations the
things you learnt are really sufficient – promised.

What happens, if you have a variable in a Fortran subroutine and you give it a value?
The natural thing, it keeps its value unless you change it (somewhere, where you have
access to it) as long as your program runs.

No “But . . . !” – That’s it. You don’t have to care.

What happens, when you hand over a variable to a Fortran subroutine or function? The
routine gets the start address of the object, whatever the object is.

No “But . . . !” – That’s it. You don’t have to care.

Yes, it’s true. Newer Fortran versions allow for the C/C++ options. Why? I don’t know.
As mentioned before, if you need C/C++ features in your software developments, learn
C/C++. For non-numerical problems like user interface programming it’s the far better
and more modern language. But if you need a language for numerical computing, stay
with Fortran – that is the conclusion of this crash course.

As promised, we finish with a couple of exercises (some adapted from an old book by W.Exercise 12.5
E. Spiess and F. G. Rheingans on Fortran programming).

Which strict Fortran 77 names are wrong?1

A-1 % Wrong, means A minus 1
X1328 % Correct
Y* % Wrong, contains invalid symbol *
2Z00 % Wrong, does not start with a letter
TEST % Correct
CONTENT % Wrong, more than 6 bytes
REAL % Wrong, REAL is a statement

What are the results of the following operations?2

INTEGER I
REAL R

R = 7.3
I = R + 4.5 % Result: I = 11

R = 4.0
I = R / 3.0 % Result: I = 1

I = 2
R = I / 3 % Result: R = 0.0

R = 4.0
R = R / 3.0 % Result: R = 1.333333

What is wrong in the Fortran codes for the given mathematical operations?3

Tutorial

272 12. Programming INSEL blocks

x = (a+ b)2 X = A + B ** 2

x =
bK−L+1

bK+L−1 + a
X = B ** (K-L+1) / B ** (K+L-1) + A

5 = (B7 + 2) · C 5 = (B**7 + 2.) * C

y =
4
√
a3 Y = A ** (3/4)

z2 =
a · b
b+ 3

Z**2 = A · B / (B + 3.)

Where are the mistakes in this program?4

IMPLICIT NONE
INTEGER I
REAL A(10),B,C,D
DO I = 1,10

A(I) = I
END DO
I = 0

1 CONTINUE
I = I + 1
B = A(I-1)**2
C = A(I/2)**3
D = B + C
PRINT *,D
IF (I .LE. 11) GO TO 1
STOP
END

Mistake 1: On the first call of statement B = A(I-1)**2 the variable I is equal to 1,
hence A(I-1) evaluates to A(0) which is undefined.

Mistake 2: On last call of statement B = A(I-1)**2 I is equal to 12, hence A(I-1)
evaluates to A(11) which is undefined.

Mistake 3: On the first call of the statement C = A(I/2)**3 the variable I is equal to 1,
so the integer division A(1/2) evaluates to A(0), which is undefined.

What is wrong with the following function?5

REAL FUNCTION SUM
IMPLICIT NONE
INTEGER I,N
SUM = 0.0
DO I = 1,N

SUM = SUM + A(I)
END DO
RETURN
END

Mistake 1: Functions must have formal parameters in parentheses.

Tutorial

12.1.4 Structuring program projects 273

Mistake 2: The variable N has no value.

Mistake 3: The vector A is not declared and thus has no values.

Correct would be

C This routine can sum up to 100 values
REAL FUNCTION SUM(A,N)
IMPLICIT NONE
INTEGER I,N,NMAX
PARAMETER (NMAX = 100)
REAL A(NMAX)
IF (N .GT. NMAX) THEN

PRINT*,”Sorry, too many elements for SUM Function”
STOP

END IF
SUM = 0.0
DO I = 1,N

SUM = SUM + A(I)
END DO
RETURN
END

What is wrong with the following subroutine statements?5

SUBROUTINE ALPHA(A,B)
IMPLICIT NONE
INTEGER N
N = 10
REAL A(N),B(N,N)

C

Mistake 1: Declarations like A(N),B(N,N) may not be preceeded by executable
statements like N = 10.

Mistake 2: Dynamical dimensioning of arrays is not allowed – unless the dimension is
one of the formal parameters.

Consequently, the subroutine fragment

SUBROUTINE ALPHA(A,B,N)
IMPLICIT NONE
INTEGER N
REAL A(N),B(N,N)

C

is formally correct.

The equation of time is a term used in solar meteorology which describes the deviation6
from mean solar time to true solar time. One formula for the calculation is given by
Spencer:

et = (0.000075 + 0.001868 cos(d)− 0.032077 sin(d)

−0.014615 cos(2d)− 0.04089 sin(2d))(180 · 4/π)

Tutorial

274 12. Programming INSEL blocks

Here, d denotes the day angle defined by

d =
2π(dn − 1)

365

Write a function which returns et as a function of the day number dn ∈ [1, 365].

Solution

REAL FUNCTION ET(DN)
IMPLICIT NONE
REAL DN,GAMMA
REAL R2PI /6.2831853/
GAMMA = R2PI * (DN - 1.0) / 365.0
ET = (0.000075
& + 0.001868 * COS(GAMMA)
& - 0.032077 * SIN(GAMMA)
& - 0.014615 * COS(2.0 * GAMMA)
& - 0.04089 * SIN(2.0 * GAMMA)) * 229.18

12.1.5 Guidelines for writing INSEL Fortran codeq qq q Fortran code lines should not exceed column 72 – even not comments starting
with a !. (Reason: Printability)q qq q All Fortran variables and statements should be written in uppercase letters.
(Reason: Compatibility – and tribute to old FORTRAN programming style)q qq q Use the ampersand & for continuation lines. (Reason: There is no reason, just the
INSEL author’s habit)q qq q The only allowed statement which starts with a label should be the CONTINUE
statement (Reason: Accepted programming style since decades)q qq q Keywords like GO TO, END DO, END IF should be separated by a blank. (Reason:
Just a matter of INSEL taste)q qq q Use the DO . . . END DO construct in connection with EXIT and CYCLE instead of
DO <label> ... <label> CONTINUE (which we did not even explain, not to say
recommend).q qq q The general number of indention bytes should be three. (Reason: Looks like the
INSEL convention)

Example

IF (VAR1 .LT. VAR2) THEN
X1 = 7.1
DO I = 1,10

Y(I) = I * X1
END DO

ELSE

Tutorial

12.1.5 Guidelines for writing INSEL Fortran code 275

X1 = -7.1
END IF

Please, don’t confuse yourself with constructions like

IF(VAR1.LT.VAR2)THEN
X1=7.1
DO I=1,10
Y(I)=I*X1
ENDDO
ELSE
X1=-7.1
ENDIFq qq q All Fortran sources should use the IMPLICIT NONE. statement. (Reason: Avoid
unnecessary error sources)q qq q In the CALL to a subroutine there should be no space between the name of the
subroutine and the opening bracket. (Reason: Better search options)q qq q Empty lines should be used sparsely. (Reason: When you read the source code,
have as much as possible on your screen)q qq q In the representation of exponential numbers no blank should be added between
the base and the exponent, i. e., 1.60201E-19 is preferred to 1.60201 E - 19.
(Reason: Better search options)q qq q In the definition of variable types no blank should be used, for example
CHARACTER*80 is preferred to CHARACTER * 80. (Reason: Matter of taste, but be
consequent)q qq q With any mathematical binary operator like =, +, -, *, /, ** (at least) one blank
should be added preceeding and following the operator. If more than one
statement belonging together follow in subsequent records, the number of blanks
to be used should clearify the structure of the sequence of statements. (Reason:
Better readability)

Example

RUZ = 0.0
RJPH = (RCPH + RC1 * RT) * RG
RJD1 = RCD1 * (RT ** 3) * EXP(RP(4) / RT)
RJD2 = RCD2 * (RT ** 2.5) * EXP(RP(5) / RT)
R8 = 1.60201E-19 / (RALPHA * 1.38054E-23)
R9 = 1.60201E-19 / (RBETA * 1.38054E-23)
RUHAT = RUZ + RJ * RS

is preferred to

RUZ = 0.0
RJPH = (RCPH + RC1 * RT) * RG
RJD1 = RCD1 * (RT ** 3) * EXP(RP(4) / RT)
RJD2 = RCD2 * (RT ** 2.5) * EXP(RP(5) / RT)

Tutorial

276 12. Programming INSEL blocks

R8 = 1.60201E-19 / (RALPHA * 1.38054E-23)
R9 = 1.60201E-19 / (RBETA * 1.38054E-23)
RUHAT = RUZ + RJ * RS

or even worse

RUZ=0.0
RJPH=(RCPH+RC1*RT)*RG
RJD1=RCD1*(RT**3)*EXP(RP(4)/RT)
RJD2=RCD2*(RT**2.5)*EXP(RP(5)/RT)
R8=1.60201E-19/(RALPHA*1.38054E-23)
R9=1.60201E-19/(RBETA*1.38054E-23)
RUHAT=RUZ+RJ*RSq qq q Comment should be introduced with a capital C in column one.q qq q Other types of comment, for example starting with an exclamation mark
anywhere in the Fortran code area, are not recommended.q qq q Comment is written in uppercase and lowercase letters.q qq q Comments should start with a capital letter. If the first character of a comment
corresponds to a variable of another context the variable name should be used as
typed.q qq q Comment follows the same guidelines as usual code. If a comment follows a
conditional statement like DO or IF it is indented in the same way as the following
code.q qq q All INSEL Fortran files should use the header files headblo.for with INSEL
blocks headsub.for with subroutines headfun.for with functions For a detailed
description of the Format of INSEL header files refer to the src2tex utility as
described later in this Module.q qq q Names of variables should not exceed six characters.q qq q REAL variables should use an R as the first character, in general.q qq q INTEGER variables should use an I as the first character, in general.q qq q CHARACTER variables should use an S as the first character, in general.q qq q LOGICAL variables should use an L as the first character, in general.

Tutorial

12.2. Programming INSEL blocks (cont.) 277

12.2 Programming INSEL blocks (cont.)

Programming INSEL blocks means to write Fortran subroutines or C/C++ functions. The
interface to both languages will be explained. Readers of our Fortran crash course will
probably prefer to write Fortran subroutines rather than C/C++ functions.

12.2.1 Block wizard

In INSEL 8 a Block Wizard and all procedures required to integrate new INSEL blocks
are now part of the graphical user interface of INSEL.

The Block Wizard can be opened via the New User Block . . . dialog, found under
Programming or as icon in the tool bar.

Tutorial

278 12. Programming INSEL blocks

Five tabs are available which INSEL users are very fond of:

As has been discussed frequently, each INSEL block must have a unique name. A newBlocks tab
block name can be entered in the Block Name UB+ text field. Any given block name will
be preceded by “UB” to indicate that the new block is going to be a “User Block.” Hence,
if you enter FIRST for instance, the internal INSEL block name will be UBFIRST.

As can be seen from the grayed Block Function field the block will be saved in a function
named ub0010. The block function name is always generated automatically by the Block
Wizard and can not be edited (at least not at the level of the Block Wizard).

INSEL follows strict naming conventions for block function names. They have theccxxxx
general form ccxxxx where cc is a shortcut for the library name into which they belong,
and xxxx is a placeholder for a 4-digit integer starting with 0001 up to a theoretical
maximum of 9999. User-programmable blocks are available in the inselUB library only.
So valid function names in this library are ub0001, ub0002, and so forth.

The Group can be chosen from a pull-down menu – groups have been introduced in
Module , page 18.

The Language pull-down menu allows to choose between generated C++ or Fortran
template source code.

The concept of IPs (integer parameters), RPs (real parameters) and DPs (double
parameters) is probably new to you and will be discussed soon. For the time being please
recognize that a minimum of ten integer parameters is required by each INSEL block.

Finally, the Blocks tab displays two text input fields: (i) The Short Description will be
displayed verbatim in the VSEit Palette, (ii) the Long Description will be used as text
describing the key idea of what the new block shall do. This text will will be typeset into
the Block Reference Manual.

The Help button can be used to see a summary of the Block Wizard’s functionality at
any time.

Tutorial

12.2.1 Block wizard 279

The Inputs tab can be used to define the number of inputs to the new block by using theInputs tab
Add button as often as required. The IDs of the input names are generated automatically.

Each input can be given a textual Label by double-click into the input field and entering
text. The text will be used as tooltip in the VSEit entity as well as in the documentation
of the new block in the Block Reference Manual. Of course, all text is open to later
editing outside the Block Wizard.

Two types of checkboxes are available for optional inputs and the initial number of

Tutorial

280 12. Programming INSEL blocks

inputs displayed on the VSEit entity. It is only possible to uncheck both bottom up.
WARNING: Unchecking a number of required inputs can be a dangerous source of
errors if not handled properly in the source code.

As long as the Block Wizard is opened, the order of the input variables can be changed
by the Move Up and Move Down buttons where applicable.

This tab is very similar to the Inputs tab and should be self-explaining.Outputs tab

The Parameters tab can be used to define a number of (numerical) block parameters.Parameters tab

The labels will be displayed in the open view of the VSEit entities. The description is
used by the VSEit entity in connection with the Info button and usually contains the unit
of the individual parameters. For each parameter an individual initial value can be set.

This tab is very similar to the Parameters tab and can be used to define string parametersStrings tab
for the new block. Only very few INSEL blocks (like file handling blocks) make use of
string parameters.

When the design of the new INSEL block is ready the Block Wizard can be closed via theFinish button
Finish button. A couple of things will happen in the background then.

12.2.2 Templates

(i) Depending on the choice of language you made, a C++ or Fortran source code
template for the block will be generated.

Tutorial

12.2.2 Templates 281

(ii) A Java template for the VSEit entity will be created and compiled into a Java class
file.

(iii) The new VSEit entity will be added to the Palette category User blocks.

(iv) The C++ or Fortran template will be opened in your favorite text editor and you
can start to implement your block idea.

Under Windows each user has an individual directory where the user documents areAd (i)
located. In the newer versions of Windows the name of this directory is Documents
(independent of the installed language package) and resides in a directory under Users
followed by the user’s name. This directory is the location for the working directory of
INSEL, named insel.work as we had seen earlier.

Here you can find the directory inselUB which will contain all your files belonging to
your user blocks. All source codes will be written to the src directory. Hence, the full
qualified name of the file created by the Block Wizard is similar to

C:\Users\Myself\Documents\insel.work\inselUB\src\ub0010.f

The Java file which belongs to the INSEL block you just created goes to the sameAd (ii)
directory. The block name in capitals will be used as Java file and class name, for example

C:\Users\Myself\Documents\insel.work\inselUB\src\UBFIRST.java

As long as you do not want to make any changes to your new block design outside the
Block Wizard you must not know anything about the Java file. But if you wish to modify
the block’s design later, you will need to modify the Java code manually. So, this is a
verbatim copy of the generated file:

UBFIRST.java

package eu.insel.userblock;

import de.vseit.network.Attribute;
import de.vseit.network.schema.Icon;
import de.vseit.network.schema.StringType;
import eu.insel.block.Block;
import eu.insel.block.BlockInfo;

@Icon(path=”icons/for.png”)

@BlockInfo(function=”ub0010”,
inMin = 3,
inMax = 3,
inIni = 3,
outMin = 1,
outMax = 1,
outIni = 1,
bpMin = 2,
bpMax = 2,
spMin = 0,

Tutorial

282 12. Programming INSEL blocks

spMax = 0)

public final class UBFIRST extends Block <UBFIRST>
{

public @StringType(init=”0”) Attribute<String> bp1;
public @StringType(init=”0”) Attribute<String> bp2;

public UBFIRST(){}
}

Try to bring together the information you provided about your new block and the
BlockInfo part – get a grasp, at least.

The Java class file will be stored in a – usually hidden – directory named AppData under
newer Windows versions. It resides in parallel to the Documents directory. The method
how this directory can be made visible in Windows Explorer depends on your Windows
version. Once you can “see”

C:\Users\Myself\AppData

you can make your long way down to the subdirectory

Roaming\doppelintegral\INSEL\customTypes\eu\insel\userblock

and find the Java class file. Usually you do not want to know all this, but in some
emergency cases it might be useful to know, anyway.

The Wizard should make your new INSEL block visible in the Palette immediately andAd (iii)
the User Block category should look like this:

You can drag your new block (or more precisely your new Type) into the work area and
open it.

Tutorial

12.2.2 Templates 283

But if you try to run a model which contains the new block you will get something like

Compiling new-1.vseit ...
E04012 Line 1: Unknown blockname: UBFIRST
W04015 Parameters for undefined blocknumber 1 specified

1 error(s), 1 warning(s)

Why’s that? So far, no functionality of the new block has been defined. The Fortran
source code has not even yet been compiled. So how should the inselEngine be able to
do something with a block, which is not even known yet?

We have to implement something, compile and link code into a library, which of course
has to be found by INSEL before the code can be executed.

So, let us approach the generated (and opened in the text editor) Fortran code slowly andAd (iv)
in small portions. If you have closed the editor in the meantime, you can reopen the file
via the Programming > Open User Block... menu, for example.

The first records are these:Header

C---
C #Begin
C #Block UBFIRST
C #Description
C This is my first INSEL block
C created by the INSEL Block Wizard.
C #Layout
C #Inputs 3
C #Outputs 1
C #Parameters 2
C #Strings 0
C #Group S
C #Details
C #Inputs
C #IN(1) Input number one
C #IN(2) Second input
C #IN(3) ... and input number three
C #Outputs
C #OUT(1) Only one output specified
C #Parameters
C #BP(1) Parameter one
C #BP(2) ... and two
C #Strings
C #None

In the header of the code we basically find the information entered in the Block Wizard:
the block name UBFIRST, the Description, the number of inputs, outputs etc in a Layout
table, and the Labels entered in the text input fields. All this information is only
comment, as we can see from the capital C in column one (Fortran convention).

In addition we see some keywords like #Block, #Description, #Layout etc. These
keywords will be interpreted by a small program named src2tex.exe which will

Tutorial

284 12. Programming INSEL blocks

transform the information contained in the comment lines into TEX format (we will
come back to this point soon).

What follows is the #Internals part of the header.Internals

C #Internals
C #Integers
C #IP(1) Return code
C #IP(2) Call mode
C \begin{detaillist}
C \item[-1] Identification call
C \item[0] Standard call
C \item[1] Constructor call
C \item[2] Destructor call
C \end{detaillist}
C #IP(3) Operation mode
C #IP(4) User defined block number
C #IP(5) Number of current block inputs
C #IP(6) Jump parameter
C #IP(7) Debug level
C #IP(8..10) Reserved
C #Reals
C #None
C #Doubles
C #None
C #Dependencies
C #Subroutine ID
C #Authors
C INSEL Block Wizard
C #End
C---

Here, basically the role of the IPs is commented. For the time being let us just observe
that IP(2) indicates four different Call modes. We are going to discuss these in a
moment.

The third important part is the declaration section.Declaration section

SUBROUTINE UB0010(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’UBFIRST’
&, OPM = 1
&, INMIN = 3
&, INS = 3
&, OUTS = 1
&, IPS = 10
&, RPS = 0
&, DPS = 0
&, BPMIN = 2
&, BPS = 2
&, SPMIN = 0

Tutorial

12.2.3 Call modes 285

&, SPS = 0
&, GROUP = 3)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)

As you can see, INSEL blocks written in Fortran are subroutines – with exactly the same
formal parameter set for each block, independent of all other block properties. The
formal parameter set consists of seven pointers to the arrays IN, OUT, IP, RP, DP, BP, and
SP.

When you look at the defined parameters and compare them with the input to the Block
Wizard, most of the values should be familiar – except OPM, which is short for operation
mode (not call mode!) and GROUP = 3, which is the internal representation of Standard
Blocks in INSEL.

Please observe, that the dimensions of the arrays are all oversized by one. The only
reason for this is to avoid compiler warnings or errors when an array (like RP in this
case, for example) has dimension zero. Hence, do NEVER access these additional values
because their memory is undefined and accessing undefined memory can lead to
unpredictable errors during execution time.

Finally, we arrive at the code section where you can let your phantasy completely free toCode section
implement new Nobel-price ideas or whatever you think is missing in INSEL but useful
for your simulations.

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,
& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)

ELSE IF (IP(2) .EQ. 1) THEN
C Constructor call

ELSE
C Destructor call

END IF
RETURN

END IF
C---- Standard call --

RETURN
END

C---

12.2.3 Call modes

As mentioned before, you can see now, how the different Call modes in an INSEL block
are organized. Again, the Call modes are

Tutorial

286 12. Programming INSEL blocks

Identification callIP(2) = –1
This Call mode is executed by the inselEngine (or any other call method when IP(2) is
equal to -1). The meaning of this call is to find out the values specified in the parameter
statement. This is always the very first mode organised by the inselEngine. In this way
the inselEngine receives all information about the general layout of the block(s) which
is/are defined in the subroutine and can handle the memory requirements for a specific
block instance.

There is no secret in the ID subroutine. It mainly reorganizes the values from the
parameter statement to the formal parameters of the subroutine:

SP = BNAMES
IP(1) = OPM
IP(2) = INMIN
IP(3) = IPS
IP(4) = BPMIN
IP(5) = SPMIN
IP(6) = SPS
IP(7) = GROUP
IP(8) = RPS
IP(9) = DPS
IP(10) = BPS
IN = FLOAT(INS)
OUT = FLOAT(OUTS)

If you wonder how the linker will later find the routine: it is compiled into the inselTools
library which has to be linked to all libraries containg INSEL blocks.

It is not necessary that you care for all these details, but we thought maybe you’d like to
know.

Constructor callIP(2) = 1
Before an INSEL model is executed INSEL provides the option for INSEL block
programmers to write some statements which are executed before the INSEL model
itself starts execution. Here you can check for the reasonability of the parameters as
given by the user or perform some preparatory step for your block.

The idea of the Constructor call is very close to the constructor concept of C++ classes.

Destructor callIP(2) = 2
Before an INSEL model terminates INSEL provides the option for INSEL block
programmers to write some last statements.

The idea of the Destructor call is very close to the destructor concept of C++ classes.

Standard callIP(2) = 0
This mode is used in every simulation time step as defined by an INSEL T-block. In most
cases, these statements will contain the most vital part of your block (and all other
INSEL blocks).

Tutorial

12.2.3 Call modes 287

Having said all this let us add some code to your first INSEL block. What shall we do?Example
Remember, we have defined a block which requires three inputs, two numerical
parameters and which provides one output. How about the formula

o = sin(i1) + i2 ∗ i3/p2

where we use p1 (parameter number one) to decide whether i1 (input number one) is
given in degrees or in radians. Okay, we could easily implement this in VSEit and make
a macro out of it. But the task is just complex enough to show some INSEL block
programming techniques.

First of all, let us summarize the ideas for the block in the header of the source code:

C #IN(1) Any angle i_1 either in degrees or in radians
C #IN(2) Just another input named i_2
C #IN(3) And input number three i_3
C #Outputs
C #OUT(1) The result of $\sin(i_1) + i_2 * i_3 / p_2$
C #Parameters
C #BP(1) Switch to decide whether i_1 is in degrees $(p_1 = 0)$
C or radians $(p_1 \ne 0)$
C #BP(2) The second parameter p_2

Here we have used some TEX conventions, like everything between two Dollar signs is
Math mode, everything else standard text. Maybe it is worth that you consider learning
some basic TEX.

Now, let’s write a first code section:

C---- Standard call --
IF (ANINT(BP(1)) .EQ. 0) THEN

C Angle is in degrees
OUT(1) = SIN(IN(1) * ASIN(1.0) / 90.0) + IN(2) * IN(3) / BP(2)

ELSE
C Angle is in radians

OUT(1) = SIN(IN(1)) + IN(2) * IN(3) / BP(2)
END IF
RETURN
END

C---

Before we go into details, let us see whether the compiler accepts our code and use the
Programming > Build User Block Library menu item.

If you are lucky and made no mistakes you should get an output similar to this in theNo errors
INSEL output window:

Starting Build User Block Library thread ...
C:\Users\Juergen Schumacher\Documents\insel.work\inselUB\resources
Building inselUB.dll ...
gfortran -c -O0 -Wall \

-fno-automatic -fno-underscoring -fmessage-length=0 \

Tutorial

288 12. Programming INSEL blocks

../src/ub0002.f ../src/ub0010.f
g++ -O0 -Wall -c -fmessage-length=0 \

../src/ub0001.cpp
gfortran -shared -o../resources/inselUB.dll \

-Wall -L../resources -linselTools \
./ub0002.o ./ub0010.o ./ub0001.o

del *.o
Library successfully created

Otherwise the compiler will report some error messages like:Error

Building inselUB.dll ...
gfortran -c -O0 -Wall \

-fno-automatic -fno-underscoring -fmessage-length=0 \
../src/ub0002.f ../src/ub0010.f

../src/ub0010.f:90.36:
OUT(1) = SIN(IN(1) * ASIN(1.0)) / 90.0) + IN(2) * IN(3) / BP(2)

1
Error: Invalid character in name at (1)
make: *** [inselUB] Error 1

Do you see where the mistake is? Getting code compiled without errors can give you a
hard time sometimes. In addition, error messages are not always clear from the
beginning but must be interpreted with a lot of phantasy. Never give up!

Okay, once you get your code compiled (and linked) let us test it before we come back to
some details.

As a first test we have used two UBFIRST blocks, the upper one with first parameter set
to zero (degrees case) and the lower one with value one (radians). The second parameter
is set to one in both cases. Since the second and third inputs are all equal to zero, the
UBFIRST block just reduces to the function sin(x).

Since the DO block varies the input angle between zero and 360 degrees the PLOT block
should display three identical sine curves. And indeed,

Tutorial

12.2.4 Properties 289

from the legend we see that three curves are plotted, all of them exactly equal.

12.2.4 Properties

When you open the UBFIRST entity you will see that the parameter labels are still the
ones defined in the Block Wizard and not – as you perhaps might have expected – the
modified parameter names in the Fortran source’s header. One reason is that TEX code
can be used in the header but not in the VSEit entities.

When you check out your inselUB\src directory you will find a file named
i18nEntityType.properties. Open it with your text editor and you will see the
content.

Strictly NO COMMAS in BPs and no round brackets in enum bps

CPP=C++ user block sample
CPP.bp1=Just a parameter
CPP.in1=Just an input
CPP.out1=Just an output

FOR=Fortran user block sample
FOR.bp1=Just a parameter
FOR.in1=Just an input
FOR.out1=Just an output
#
#Tue Mar 15 15:37:05 CET 2011
UBFIRST=My first INSEL block
UBFIRST.bp1=Parameter one
UBFIRST.bp1-DESCR=Unit 1
UBFIRST.bp2=... and two
UBFIRST.bp2-DESCR=Unit 2

Tutorial

290 12. Programming INSEL blocks

UBFIRST.in1=Input number one
UBFIRST.in2=Second input
UBFIRST.in3=... and input number three
UBFIRST.out1=Only one output specified

As you can see, all labels from the Block Wizard are appended. Feel free to edit the labels
to your needs, for example

UBFIRST.bp1=Degrees-Radians switch
UBFIRST.bp1-DESCR=0: degrees, 1: radians
UBFIRST.bp2=Second parameter
UBFIRST.bp2-DESCR=

and save it. Three things are left to say to the .properties file:q qq q The modified file has to be copied to the directory where the class files reside. One
way to accomplish this is by running Build All from the Programming menu or
from the tool bar.q qq q The bad news is that INSEL has to be restarted before the changes are applied.q qq q The good news is that the i18n in the file name stands for internationalisation
(with 18 letters nternationalisatio – those computing guys). That means you can
have a file named i18nEntityType_de.properties with German labels for the
German versions of your blocks.

Following the recommendation to build all and restart INSEL we finally get

12.2.5 Documentation

The Build All function has a nice side effect: When you open the User Block Reference
Manual from the Programming menu you will find your block documented.

Tutorial

12.2.5 Documentation 291

You can open the manual page also from the Help button in the Entity editor of your
user block.

The complete LATEX code is generated by src2tex.exe which is located in the same
directory as your personal inselUB.dll that is in

C:\Users\Myself\Documents\insel.work\inselUB\resources

If you add a file named after your block with extension .des, for eample ubfirst.des.des files
and place it in the directory

Tutorial

292 12. Programming INSEL blocks

C:\Users\Myself\Documents\insel.work\inselUB\doc\blockReference\english\des

the text in this file will be added to your User Block Reference Manual after rebuilding it
with the Build User Block Reference function under the Programming menu. You can use
everything TEX and LATEX provides – and that is a lot!

Source to TEX syntax

Fortran and C-code written for INSEL can be documented within the framework of the
source code itself. INSEL provides a converter called src2tex.exe which generates
documentation files written in LATEX from special statements in Fortran or C source code
comment records.

The src2tex commands are introduced by a # symbol. It is important to note that the#-commands
#-commands may not start before column three in the comment records, because C
comments can to be written as ’//’ in column one and two of the source code, while
Fortran comments are assumed to be of the form ’C’ plus one space character.

The #-commands in general are not case sensitive but it is recommended that the first
letter should be an uppercase letter, while all the other letters should be lowercase.

The following #-commands are known to the src2tex converter (Please note that the
sequence of the statements is crucial, i. e., the #-commands may only be used in the
given order due to the sequential structure of the src2tex converter):

#Begin marks the beginning of a section which is interpreted by the src2tex converter.Begin

#Block <Namelist> marks the beginning of an INSEL block section. The <Namelist> isBlock
a list of block names, which are defined in the source code under consideration. Usually,
<Namelist> consists of only one unique block name. If <Namelist> has more than one
entry, the names have to be separated by commas followed by optional blanks.
<Namelist> ends with the next #-command, usually #Description.
#Block <Namelist> is used as a name for the LATEX section of the INSEL Block
Reference Manual.

#Description <Name> <TeX-Text> allows for a short description given as <TeX-Text>Description
of the function of block <Name> witten in LATEX. When the description is not unique for
all blocks in the <Namelist> of the #Block command a particular block description may
be specified by <Name>.

#Layout is used by src2tex to define a list of the most important properties of an INSELLayout
block, such as

#Inputs <NumberOfInputs> where <NumberOfInputs> is either an INTEGER constant
or a range of allowed <InputValues> of the form <InputMin> . . . [<InputMax>] with
<InputMin> and <InputMax> being INTEGER constants such that <InputMin> is less
than <InputMax>,

Tutorial

12.2.5 Documentation 293

#Outputs <NumberOfOutputs> where <NumberOfOutputs> is a constant INTEGER
value,

#Parameters <NumberOfParameters> where <NumberOfParameters> is either an
INTEGER constant or a range of allowed <ParameterValues> of the form
<ParametersMin> . . . [<ParametersMax>] with <ParametersMin> and
<ParametersMax> being INTEGER constants such that <ParametersMin> is less than
<ParametersMax>,

#Strings <NumberOfStrings> where <NumberOfStrings> is either an INTEGER
constant or a range of allowed <StringValues> of the form <StringsMin> . . .
[<StringsMax>] with <StringsMin> and <StringsMax> being INTEGER constants
such that <StringsMin> is less than <StringsMax>,

#Group <GroupInformation> where <GroupInformation> may either be a C (for
Constant blocks), T (for Timer blocks), S (for Standard blocks), L (for Loop blocks), D
(for Delay blocks) or I (for the If block group of INSEL).

#Details is – like #Layout – a sectioning src2tex command, i. e., there are someDetails
subcommands to #Details, namely

#Inputs <Block> starts a list of all available inputs as used by the INSEL block <Block>.
When the inputs are unique for all the blocks in a section which have not been specified
by an #Inputs <Block> command in one of the preceding records then <Block> may
be omitted and the #Inputs command is applied to all other blocks within this section.

#IN(1) <TeX-Text-1>
#IN(2) <TeX-Text-2>
#IN(n) <TeX-Text-n>

where <TeX-Text-i> may be any description of the ith input written in LATEX. When the
number n is not constant but variable n should be written as n to produce a MathFont
representation of n in the LATEX code. In case of n equal to zero, i. e., the #Inputs
description of a block with no inputs, a #None statement should be provided.

#Outputs <Block> starts a list of all available outputs as used by the INSEL block
<Block>.

#OUT(1) <TeX-Text-1>
#OUT(2) <TeX-Text-2>
#OUT(n) <TeX-Text-n>

See #Inputs for further details.

#Parameters <Block> starts a list of all available numerical parameters as used by the
INSEL block <Block>.

#BP(1) <TeX-Text-1>
#BP(2) <TeX-Text-2>
#BP(n) <TeX-Text-n>

See #Inputs for further details.

Tutorial

294 12. Programming INSEL blocks

#Strings <Block> starts a list of all available string parameters as used by the INSEL
block <Block>.

#SP(1) <TeX-Text-1>
#SP(2) <TeX-Text-2>
#SP(n) <TeX-Text-n>

See #Inputs for further details.

#Remarks <Block> allows for the inclusion of some remarkable text corresponding toRemarks
the <Block> block. The use of #Remarks is optional.

This concludes the list of #-commands which are used by src2tex to generate *.tex files
from the source code file *.f or *.cpp. The following #-commands are used by src2tex
to generate part of the INSEL Block Source Code Reference Manual.

#Internals is another sectioning command of src2tex. Its subcommands areInternals

#Integers which introduces a list of internal INTEGER parameters
#IP(1) <TeX-Text-1>
#IP(2) <TeX-Text-2>
#IP(n) <TeX-Text-n>

See #Inputs for further details.

#Reals which introduces a list of internal REAL parameters
#RP(1) <TeX-Text-1>
#RP(2) <TeX-Text-2>
#RP(n) <TeX-Text-n>

See #Inputs for further details.

#Doubles which introduces a list of internal DOUBLE PRECISION parameters
#DP(1) <TeX-Text-1>
#DP(2) <TeX-Text-2>
#DP(n) <TeX-Text-n>

See #Inputs for further details.

#Dependencies is a command which allows for the description of subroutines orDependencies
functions that are used by the source code. It follows a list of those subroutines and
functions which are used.

#<SUB-1> <TeX-Text-1>
#<SUB-2> <TeX-Text-2>
#<SUB-n> <TeX-Text-n>

where <SUB-i> stands for the name of the used function and <TeX-Text-i> is a short
description of <SUB-i>. See #Inputs for further details.

The #Authors statement can be used to document the name of the block’s codeAuthors
author(s).

The #End statement tells src2tex to finish the interpretation of the source codeEnd

Tutorial

12.3. Text output from INSEL 295

documentation. The rest of the source code is ignored by src2tex.

Blocks written in C/C++ expect C syntax rules, i. e., Fortran’s BP(1) corresponds to C’sC conventions
BP[0] etc.

12.3 Text output from INSEL

This section is about handling of text output from INSEL. In our Fortran course we have
used simple PRINT statements. The precondition for the PRINT statement is that the
program runs in a DOS box or a text terminal. Windows applications cannot use PRINT
statements, since there is no defined “receiver” for text messages, in the first place. How
does INSEL handle this problem?

12.3.1 Message files

A second problem which has to do with text output is, that text is always written in aLanguage?
certain language – like English, German, Spanish, or any other language that a software
supports. If we would include the text in the source code like

PRINT *,’This is an error message in English’

adaption to a new language would mean, that we have to go through all source files of
the program, translate all messages into the new language, recompile and link all
sources. As long as the project has only a few subroutines, this procedure seems
acceptable. But in an application like INSEL, which has more than thousand source code
files, this method drops out.

The second problem is solved in INSEL with a file called insel.msg in INSEL’sinsel.msg
resources directory. This file contains all textual messages that can occur. It is an ASCII
file, so you can open it with your text editor and peep in. Here are the first ten records:

00000 Error #1I6.6# (no detailed error message found)
00000 ... General messages
00002 File not found
00003 Path not found
00004 Too many open files
00005 File access denied
00006 Invalid file handle
00012 Invalid file access mode
00015 Invalid drive number
00016 Cannot remove current directory

To adapt INSEL to a new language now simply means a new translation of the file
insel.msg.

INSEL uses message numbers in the range of 0 to 89999. Message numbers of 90000 oruser.msg
higher are reserved for user-defined messages. The text for user-defined messages is
expected in a file named user.msg located in the inselUB\resources directory.

The first mentioned problem – i. e., the question where and how text is displayed – isos0txt

Tutorial

296 12. Programming INSEL blocks

solved in a function named os0txt. In the name of the function, the first two letters are
short for operating system and indicate that this function contains code which is
operating-system dependent. Hence, for every operating system that INSEL supports
there is a different os0txt function available.

For example, there is one for DOS box output, one for Windows output, one for Linux
output, and so forth. They all have the same name, so they can all be called by the
statement CALL OS0TXT(STRING) from Fortran or by os0txt(string); from C. This
call is operating system independent. So the calling routines are all operating-system
independent.

Usually, you will not make direct calls to os0txt but use the INSEL message system,
which is presented next.

12.3.2 The INSEL message system

All INSEL messages are distributed via the Fortran MSG subroutine which will be resolved
into a call to os0txt by INSEL. Blocks, functions, and subroutines can call MSG via

CALL MSG(I,R,S)

where I is an integer array of size ten I(10), R is a real array of size ten R(10) and S is
an array of characters with 1024 bytes of size ten S(10).

I(1) must include a unique message-type and message-text identifier. The format of this
identifier is

xyyyyy

where x indicates a one-digit message-type following the conventionMessage types

0 General message with message number supressed

1 General message

2 Warning message

3 Error message

4 Fatal error message

and yyyyy indicates a five-digit message number as defined in a .msg file. As mentioned
before, insel.msg in the resources directory of the INSEL installation is used for
yyyyy less than 90000 the file . If yyyyy is greater or equal 90000 the file user.msg in the
user’s working directory inselUB\resources is used.

Hence, independent on the installation and on further updates of insel.msg, you can
use your own numbers and write your own user.msg file with your personal error
messages.

Tutorial

12.3.2 The INSEL message system 297

Please note that the message identifier yyyyy must be sorted with increasing values inIncreasing
numbers the .msg files.

In case of C++ routines MSG is called via MSG(I,R,S) with int I[10], double R[10]
and char* S[10][1024]. Please note that due to C conventions I[0] contains the
message-type and message-text identifier in this case.

This is a code snippet which calls MSG from C++:

extern ”C”
void msg(int* iarr, float* rarr, char s[10][1024], unsigned int len = 1024);

...
int msgNumber = 4711;

...
int iarr[10];
float rarr[10];
char sarr[10][1024];

...
iarr[0] = msgNumber;
msg(iarr, rarr, sarr);

The standard output of MSG is a message of type

syyyyy text

where s is a one letter message-type indicator following the convention:

A space character stands for a general message (in this case only text is displayed).Space

An M stands for a general message.M

W is a warning message.W

E is an error message.E

F is a fatal error message.F

yyyyy is the obove-mentioned message number.yyyyy

text is a concatenated text message which may include variable numerical and textualtext
information.

For text, an INSEL specific syntax has been developed. Non-constant entries are format
statements. These may be #n*# where n is the index of the corresponding array element
ranging from 0 to 9, zero is interpreted as 10, and * may be one of the following formats:

For use with the I array the standard format is Im.m where I is short for integer, m is the
number of bytes to be displayed in text (including leading zeros). Im is similar to Im.m
but is stripped, i. e., leading blanks are omitted.

For use with the R array there are two formats, one is Fx.y can be used where F is short
for float, x is the number of bytes (including sign and period) and y corresponds to the
number of bytes following the period. The second format is of type Ex.y where E is short

Tutorial

298 12. Programming INSEL blocks

for exponential, x is the number of bytes (including sign and period) and y is the number
of printed digits. For example the number 120 with format E7.2 is displayed as .12E+03.

For use with the S array the available formats are A where A is short for alphanumeric
where the text is stripped from leading and trailing blanks. The other available format is
Am where A again is short for Fortran A-Format and m represents the number of bytes to
be displayed.

In the file insel.msg you will find the recordExample

05002 Block #4I5.5#: Number of divisions by zero: #9I8#

This message is used by the DIV block, which divides its first input by the second input
OUT(1) = IN(1) / IN(2). Whenever DIV is called with IN(2) = 0 the block does not
perform the division but counts IP(11) = IP(11) + 1 instead of causing a runtime
error. At the end of a simulation run IP(11) is equivalent to the number of calls with
IN(2) = 0.

Due to laziness and practical considerations many INSEL blocks use the anyway defined
variables IP, RP, and SP rather than defining a new variable set I, R, and S each time.
Since the MSG subroutine allows for ten I values only, IP(11) is copied to IP(9) in this
case and IP(1) is set to 205002. It follows, that the format string #9I8# is replaced by
the corresponding number of divisions by zero. By default, IP(4) is used by INSEL to
store the user-defined block number, hence, #4I5.5# provides this information. If we
assume the number of divisions by zero was 17 and the user defined block number 4711,
the code

...
C Destructor call

IF (IP(11) .GT. 0) THEN
C Display number of divisions by zero

IP(9) = IP(11)
IP(1) = 205002
CALL MSG(IP,RP,SP)

END IF
...

will result in the warning message

W05002 Block 04711: Number of divisions by zero: 17

Agreed, this kind of use of the IP array is nothing for purists and will take its revenge in
the future – but what did the Professor say at the end of the first part of Back to the
future? “Well, I figured – but now!”

Write a block which uses MSG to display the call modes. Hint: Message number 4030Exercise 12.6
displays the first string parameter handed over via MSG.

Do you have your code ready? Here is our solution.Solution

Tutorial

12.3.2 The INSEL message system 299

C---
SUBROUTINE UB0003(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’UBCALLMODE’
&, OPM = 1
&, INMIN = 0
&, INS = 0
&, OUTS = 0
&, IPS = 10
&, RPS = 0
&, DPS = 0
&, BPMIN = 0
&, BPS = 0
&, SPMIN = 0
&, SPS = 0
&, GROUP = 3)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)
INTEGER I(10)
REAL R(10)
CHARACTER*1024 S(10)

C---
I(1) = 4030
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

S(1) = ’Identification call’
!CALL MSG(I,R,S)
CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,

& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)
ELSE IF (IP(2) .EQ. 1) THEN

C Constructor call
S(1) = ’Constructor call’
CALL MSG(I,R,S)

ELSE
C Destructor call

S(1) = ’Destructor call’
CALL MSG(I,R,S)

END IF
RETURN

END IF
C---- Standard call --

S(1) = ’Standard call’
CALL MSG(I,R,S)
RETURN
END

C---

If you have studied section about the INSEL message system the code should be self

Tutorial

300 12. Programming INSEL blocks

explaining. In order to test the block write a small program like

s 1 do
p 1 1 3 1
s 2 callmode

and run it. When everything works fine the result should be

Identification call
Compiling ../examples/tutorial/module12/callmode.insel ...
Constructor call
No errors or warnings
Running INSEL 8.3 ...
Standard call
Standard call
Standard call
Destructor call
Normal end of run

Please observe that the Identification call is executed even before inselEngine starts to
compile the model file and that the Constructor call is made before the start of the
simulation run.

After testing this example delete or comment out the statement which displays theHint
Identification call string. Because otherwise it will be displayed in all your
simulation runs – and you understand why, don’t you?

12.4 INSEL block source code examples

We are now ready to look at some INSEL blocks. Before we start, let us have a summary
view on the variables which are in common to all INSEL blocks.

The first statement declares the type of the program unit and uses the already discussedDeclaration section
subroutine interface. The next statement declares IMPLICIT NONE, which means that all
variables which are used in the subroutine have to be declared in the declaration section
of the code. As pointed out in our Fortran crash course, we strongly recommend to use
an IMPLICIT NONE statement in order to avoid the implicit variable type settings of
Fortran.

A sequence of declarations of some vital INSEL variables follows. Take your time to
understand them properly.

BNAMES must be a CHARACTER*1024 variable, followed by the declaration of 12 INTEGER
variables which are essential for INSEL. Their names are OPM, INMIN, INS, OUTS, IPS,
RPS, DPS, BPMIN, BPS, SPMIN, SPS, and GROUP.

Let us look at their meaning one by one.

BNAMES is a CHARACTER variable which defines the INSEL block name(s) defined in aBNAMES
particular UBxxxx subroutine. Like all literal constants in Fortran, it must be embedded

Tutorial

12.4. INSEL block source code examples 301

in quotes. Some well-known INSEL block names are CONST, DO, CLOCK, PVI, PLOT
etc. Make sure that you don’t use an already existing INSEL block name in BNAMES,
because INSEL block names must be unique. Remember the rules for INSEL block
names: Block names should have 1 to 8 alphanumerical bytes (only A-Z, 0-9 are allowed),
the first byte should be a letter. If you want to define more than one block in your
UBxxxx subroutine, the names have to be separated by at least one blank (space
character) and you have to declare this in the operation mode parameter OPM.

The OPM parameter specifies the number of blocks defined in your UBxxxx subroutine. InOPM
most cases exactly one block per UBxxxx source file will be implemented, so the default
is OPM = 1.

The INMIN parameter defines the minimum number of inputs that a user of your blockINMIN
has to connect to the block(s) defined in UBxxxx, when it is used in an INSEL model. If a
user of your block connects less than INMIN inputs to one of the blocks listed in BNAMES
then the INSEL compiler generates an error message and does not execute the model.

The INS parameter defines the maximum number of inputs that a user is allowed toINS
connect to a block defined in UBxxxx (and defines the actual size of the IN array). In
most cases, the number of block inputs that have to be connected by a user of your block
will be a constant, i. e., INMIN and INS are set to the same value by the programmer of
the UBxxxx subroutine.

The OUTS parameter defines the size of the output array OUT, hence is the (maximum)OUTS
number of block outputs. From a user’s point of view the number of block outputs must
not necessarily be a constant but from a programmers point of view it has to be a
constant because Fortran does not allow for dynamical memory allocation.

The IPS parameter is a very INSEL specific parameter, because it defines the number ofIPS
used INTEGER parameters and the first 10 IPs are reserved by INSEL. The meaning of the
first ten IPs is as follows:

IP(1) contains the return code. When an INSEL subroutine terminates normally itsIP(1)
return code is zero, i. e., the subroutine returns IP(1) = 0. When an error occurs during
the execution of the subroutine the return code will be different from zero, i. e.,
IP(1) ̸= 0.

IP(2) is reserved for the call mode. When the inselEngine calls a block with IP(2) set toIP(2)
minus one the block performs an Identification call, when IP(2) is set to zero the block
performs a Standard call, when IP(2) is set to one the block performs a Constructor
call, when IP(2) is set to two the block performs a Destructor call.

IP(3) is reserved for the operation mode. As seen before, an INSEL UBxxxx subroutineIP(3)
can have more than one operation mode. The parameter IP(3) – again set by the
inselEngine before the block’s call – informs the routine, which operation mode is
required.

Tutorial

302 12. Programming INSEL blocks

IP(4) contains the user-defined block number. In an INSEL model, every block has aIP(4)
unique number – this number is handed over to the subroutine as INTEGER parameter
IP(4).

IP(5) always contains the number of currently connected block inputs.IP(5)
IP(6) is the Jump parameter as discussed in Module , page 88, for instance.IP(6)
IP(7) can be used to set the Debug level for an INSEL simulation run. When IP(7) = 0IP(7)
no debug information is generated. In case of IP(7) = 1 each block call displays block
name and call mode in the standard output of INSEL. The Debug level can be set with
the -d option when the inselEngine is called.

IP(8) to IP(10) are reserved but not used in the current INSEL version 8.IP(8) . . . IP(10)
The use of the IP, RP and DP arrays is probably the most difficult point to understand for
the development of new INSEL blocks. These parameters allow access to variables in a
UBxxxx subroutine, independent of the instance of the block in an INSEL model. In
short, you must use the IP, RP, and DP arrays when your block has to memorize values
of variables from one call to another, because you do not know the number of block
instances in advance. Don’t care for now. We come back to this point later.

The RPS parameter defines the number of internal REAL parameters RP that can be usedRPS
in a user block.

The DPS parameter defines the number of internal DOUBLE PRECISION parameters DPDPS
that can be used in a user block.

The BPMIN parameter defines the minimum number of numerical parameters that a userBPMIN
has to specify if s/he wants to use your block. If a user of your block provides less than
BPMIN numerical parameters to one of the blocks listed in BNAMES then the INSEL
compiler generates an error message and does not execute the INSEL model.

The BPS parameter defines the maximum number of numerical parameters that a user isBPS
allowed to specify for the use of your user block (and defines the actual size of the BP
array. In most cases, the number of numerical block parameters that have to be specified
by a user of your block will be a constant, i. e., BPMIN and BPS are set to the same value
by the programmer of the user block.

The SPMIN parameter defines the minimum number of string parameters that a user hasSPMIN
to specify for the use of your block, when used in an INSEL model. If a user of your
block specifies less than SPMIN string parameters for a block listed in BNAMES then the
INSEL compiler generates an error message and does not execute the INSEL model.

The SPS parameter defines the maximum number of string parameters that a user isSPS
allowed to specify for the use of your block (and defines the actual size of the SP array).
In most cases, the number of string parameters that must be provided by a user of your

Tutorial

12.4.1 The CONST block 303

block will be a constant (zero in most cases), i. e., SPMIN and SPS are set to the same
value by the programmer of the user block.

The GROUP parameter defines the belonging of a user block to an INSEL group. As shownGROUP
in earlier Modules of this Tutorial within the framework of INSEL six block groups are
defined.q qq q GROUP = 1: Constant block (C-block)q qq q GROUP = 2: Timer block (T-block)q qq q GROUP = 3: Standard block (S-block)q qq q GROUP = 4: Loop block (L-block)q qq q GROUP = 5: Delay block (D-block)q qq q GROUP = 6: If block (I-block)

The use of the INSEL group requires a rather deep understanding of the INSEL concepts
and for your first INSEL blocks it is not recommended to go into the details, hence
GROUP should be set to 3 – i. e., the Standard block group. The advanced INSEL
programmer finds additional information later in this section.

When you want to design a UBxxxx subroutine, you must provide values for all
discussed variables in the PARAMETER statement. Because these values are constants it
follows that all blocks which are defined in a UBxxxx source code must have the same
layout. The information you provide in the PARAMETER statement is used by the
inselEngine for memory allocation.

The next four statements in ubxxxx.f make use of the above mentioned INSEL
parameters and SHOULD UNDER NO CIRCUMSTANCES BE CHANGED.
The line

C---

separates the non-executable statements from the first executable statement.

Maybe you have recognized that the dimension of the INSEL arrays exceeds the
dimensions defined in the PARAMETER statement by one. The reason is very pragmatic: to
avoid unnecessary compiler errors for the case where one of the parameters is equal to
zero. Since all variables are handed over to the subroutine as pointers it doesn’t make
any difference. But the programmer must make sure that not more than BPS elements are
used of the BP array, for instance. Otherwise unforeseen computer crashes will result.

12.4.1 The CONST block

Let us start our block journey with one the most primitive INSEL blocks, the CONST
block. It has one parameter p and one output y. During execution the CONST block

Tutorial

304 12. Programming INSEL blocks

performs the operation y = p, that’s it. As the name indicates and as you know, the
CONST block is a C-block. By definition, it is called only once in a simulation run,
independent of any T-block settings. This is the code:

C---
SUBROUTINE FB0001(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’CONST’
&, OPM = 1
&, INMIN = 0
&, INS = 0
&, OUTS = 1
&, IPS = 10
&, RPS = 0
&, DPS = 0
&, BPMIN = 1
&, BPS = 1
&, SPMIN = 0
&, SPS = 0
&, GROUP = 1)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,
& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)

ELSE IF (IP(2) .EQ. 1) THEN
C Constructor call

ELSE
C Destructor call

END IF
RETURN

END IF
C---- Standard call --

OUT(1) = BP(1)
RETURN
END

C---

The code should be completely clear by now. From the name of the subroutine we see
that the CONST block is a member of inselFB.dll, i. e., included in the Fundamental
blocks library.

12.4.2 The SUM, MUL, MAX, and MIN blocks

The next example shows the use of operation modes.

Tutorial

12.4.2 The SUM, MUL, MAX, and MIN blocks 305

C---
SUBROUTINE FB0002(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’SUM MUL MAX MIN’
&, OPM = 4
&, INMIN = 1
&, INS = 999
&, OUTS = 1
&, IPS = 10
&, RPS = 0
&, DPS = 0
&, BPMIN = 0
&, BPS = 0
&, SPMIN = 0
&, SPS = 0
&, GROUP = 3)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)
INTEGER I

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,
& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)

ELSE IF (IP(2) .EQ. 1) THEN
C Constructor call

ELSE
C Destructor call

END IF
RETURN

END IF
C---- Standard call --

GO TO (1,2,3,4) ABS(IP(3))
1 CONTINUE

OUT(1) = 0.0
DO I = 1,IP(5)

OUT(1) = OUT(1) + IN(I)
END DO
RETURN

2 CONTINUE
OUT(1) = 1.0
DO I = 1,IP(5)

OUT(1) = OUT(1) * IN(I)
END DO
RETURN

3 CONTINUE
OUT(1) = IN(1)
DO I = 2,IP(5)

Tutorial

306 12. Programming INSEL blocks

IF (IN(I) .GT. OUT(1)) OUT(1) = IN(I)
END DO
RETURN

4 CONTINUE
OUT(1) = IN(1)
DO I = 2,IP(5)

IF (IN(I) .LT. OUT(1)) OUT(1) = IN(I)
END DO
RETURN
END

C---

The value of BNAMES shows us that the INSEL blocks SUM, MUL, MAX, and MIN areOPM = 4
implemented in this subroutine – four blocks, i. e., four different operation modes, and
therefore OPM is equal to 4. The number of block inputs for each block can vary from one
to a maximum of 999 – this is a bit crude, but Fortran 77 does not allow dynamical
memory allocation. The four blocks have one output each, ergo OUTS = 1. Let’s
continue with the standard call.

The standarad call starts with an arithmetic GO TO statement. From our earlier
discussion of the IP parameters, maybe you remember that IP(3) is used for the current
operation mode. Consequently, when IP(3) comes with a value one, two, three, or four
the arithmetic GO TO branches to label 1, 2, 3, or 4 and continues execution there.

At label 1 we find the code for the SUM block (the first mentioned in BNAMES, i. e.,Label 1
operation mode 1). When you do remember that IP(5) always contains the number of
currently connected inputs, the code should be clear – including the RETURN statement.

At label 2 we find the code for the MUL block (the second mentioned in BNAMES, i. e.,Label 2
operation mode 2). It is very similar to the SUM block and the code should be clear again.

At labels 3 and 4 you find the code of the MAX (operation mode 3) and the MIN blockLabels 3 and 4
(operation mode 4), respectively.

All four blocks perform rather similar operations, they all have the same flexible number
of inputs, one output, no parameter. That is the reason why we have put the four of
them into one file.

There is one further interesting point which you can learn from this example, and that is
the fact that this block uses only one local variable, the loop index I. All other variables
come via the interface. In all four modes we use the same variable names, OUT(1), for
example, but they all represent completely different variables and values. The
management of the variables is done by the inselEngine. Each of the four blocks can be
used an arbitrary number of times in one INSEL model without causing any conflict
with the variables. Isn’t that great?!

12.4.3 The DIV block

Tutorial

12.4.3 The DIV block 307

The next example demonstrates the practical use of the different call modes and makes
use of the message system.

C---
SUBROUTINE FB0004(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’DIV’
&, OPM = 1
&, INMIN = 2
&, INS = 2
&, OUTS = 1
&, IPS = 11
&, RPS = 0
&, DPS = 0
&, BPMIN = 0
&, BPS = 0
&, SPMIN = 0
&, SPS = 0
&, GROUP = 3)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,
& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)

ELSE IF (IP(2) .EQ. 1) THEN
C Constructor call

ELSE
C Destructor call

IF (IP(11) .GT. 0) THEN
C Display number of divisions by zero

IP(9) = IP(11)
IP(1) = 205002
CALL MSG(IP,RP,SP)

END IF
END IF
RETURN

END IF
C---- Standard call --

IF (IN(2) .NE. 0.0) THEN
OUT(1) = IN(1) / IN(2)

ELSE
IF (IP(11) .EQ. 0) THEN

C First division by zero
IP(11) = 1
IP(1) = 205001
CALL MSG(IP,RP,SP)

Tutorial

308 12. Programming INSEL blocks

ELSE
IP(11) = IP(11) + 1

END IF
END IF
RETURN
END

C---

This is our first example with some code in the destructor call. The PARAMETER
statement shows that the block requires exactly two inputs (let’s say x1 and x2), one
output (y = x1/x2), and eleven, i. e., one specific IP(11), INTEGER parameters. We take
care of the fact that a division by zero normally ends in a run-time error and completely
removes the program which caused the run-time error from memory and thus stops it.

The standard call tests whether the second input x2 – or more precisely IN(2) – is
different from zero. In this case the block performs the division x1/x2 – or, more
precisely again IN(1) / IN(2) – and outputs the result on output one, i. e.,
OUT(1) = IN(1) / IN(2).

What if IN(2) is equal to zero? In this case we want to display a warning message andIN(2) = 0
continue program execution. But one warning message should be sufficient. If the DIV
block is called many times with an invalid second input equal to zero, it is sufficient to
display the warning message once, count the number of occurances and – at the very
end of the model execution – inform the user how often this exception has occurred.
This is exactly what has been programmed in the if-then-else statement.

When the second input is equal to zero we first check the value of IP(11) – all
INTEGER parameters are initialised with a value zero by the inselEngine, you can rely
on this. When IP(11) is equal to zero, it means that this is the first time that the DIV
block shall divide by zero. We don’t follow this request, but set IP(11) equal to one, set
IP(1) – do you remember, this INTEGER parameter in INSEL contains the return code of
a routine – to a value which stands for the error text and the severity of the error (a 2 as
first digit indicates that this is a warning only – see the section on the INSEL message
system) and the error number, in file insel.msg in this case. When we look up the file
insel.msg we find the record

05001 Block #4I5.5#: Division by zero

so that the next statement CALL MSG(IP,RP,SP) results in a displayed error message

W05001 Block xxxxx: Division by zero

where xxxxx indicates the block number (with leading zeros) of the corresponding DIV
block in the INSEL model.

When on a further call of the same DIV block the second input is equal to zero, the ELSE
part of the IF statement finds that IP(11) is not equal to one and the block simply
increases the value of IP(11) by one – until the end of the execution of the INSEL
simulation model. And then?

Tutorial

12.4.4 The ROOT, GAIN, ATT, and OFFSET blocks 309

And then the same DIV block is called again by the inselEngine in the destructor call.
Here we check, whether IP(11) – our counter for the occurrancies when IN(2) is equal
to zero – is greater than zero, i. e., if during the execution of the INSEL model a
divide-by-zero situation has occurred or not. If yes, we display the number of
occurrancies IP(11) with error mesage number 5002 of the insel.msg file.

Please notice again: when an INSEL model uses more than one DIV block, each instanceFlexible memory
gets its own variable memory for IP(11), for example. This means that the different
DIV blocks all have their private counters. It is not possible to solve this problem with a
local variable, let’s say INTEGER COUNT0. Although local variables keep their values
from one call to the next in Fortran subroutines, there would be a conflict between the
different blocks if there was only one local counter. The result would be the total
number of calls with IN(2) = 0 of all DIV blocks in the INSEL model. It would also be a
nice result, but not what was intended.

The last argumentation has shown, what the IPs, RPs and DPs are good for in INSEL:
they provide a generalization of the concept that local variables keep their values from
call to call.

12.4.4 The ROOT, GAIN, ATT, and OFFSET blocks

Check out the details of fb0006.f as a first example for some code in the Constructor
call by yourself.

C---
SUBROUTINE FB0006(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’ROOT GAIN ATT OFFSET’
&, OPM = 4
&, INMIN = 1
&, INS = 1
&, OUTS = 1
&, IPS = 11
&, RPS = 0
&, DPS = 0
&, BPMIN = 1
&, BPS = 1
&, SPMIN = 0
&, SPS = 0
&, GROUP = 3)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN

Tutorial

310 12. Programming INSEL blocks

C Identification call
CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,

& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)
ELSE IF (IP(2) .EQ. 1) THEN

C Constructor call
IF (ABS(IP(3)) .LT. 1 .OR. ABS(IP(3)) .GT. OPM) THEN

C Invalid operation mode
IP(1) = 305126
CALL MSG(IP,RP,SP)

END IF
IF (ABS(IP(3)) .EQ. 1 .AND. ABS(BP(1)) .LE. 1.0) THEN

C Invalid root exponent
IP(1) = 305005
CALL MSG(IP,RP,SP)

END IF
IF (ABS(IP(3)) .EQ. 3 .AND. BP(1) .EQ. 0.0) THEN

C Zero is an invalid attenuator parameter
IP(1) = 305023
CALL MSG(IP,RP,SP)

END IF
ELSE

C Destructor call
IF (IP(11) .GT. 0) THEN

C Display number of calls with negative input
IP(9) = IP(11)
IP(1) = 205004
CALL MSG(IP,RP,SP)

END IF
END IF
RETURN

END IF
C---- Standard call --

GO TO (1,2,3,4) ABS(IP(3))
1 CONTINUE
C ROOT

IF (IN(1) .GE. 0.0) THEN
OUT(1) = IN(1) ** (1.0 / BP(1))

ELSE
IF (IP(11) .EQ. 0) THEN

C First call with negative input
IP(11) = 1
IP(1) = 205003
CALL MSG(IP,RP,SP)

ELSE
IP(11) = IP(11) + 1

END IF
END IF
RETURN

2 CONTINUE
C GAIN

OUT(1) = IN(1) * BP(1)
RETURN

Tutorial

12.4.5 The T-block DO 311

3 CONTINUE
C ATT

OUT(1) = IN(1) / BP(1)
RETURN

4 CONTINUE
C OFFSET

OUT(1) = IN(1) + BP(1)
RETURN
END

C---

12.4.5 The T-block DO

So far, we have examined a C-block and some simple S-blocks. In order to understand
how INSEL Timer blocks can be created let’s have a closer look at one of the most
frequently used INSEL blocks: the DO block. This is its source code:

C---
SUBROUTINE FB0013(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’DO’
&, OPM = 1
&, INMIN = 0
&, INS = 1
&, OUTS = 1
&, IPS = 13
&, RPS = 0
&, DPS = 0
&, BPMIN = 3
&, BPS = 3
&, SPMIN = 0
&, SPS = 0
&, GROUP = 2)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,
& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)

ELSE IF (IP(2) .EQ. 1) THEN
C Constructor call

IF (ABS(BP(3)) .EQ. 0.0) THEN
C Invalid increment

IP(1) = 305019
CALL MSG(IP,RP,SP)

Tutorial

312 12. Programming INSEL blocks

END IF
IF (BP(3) .GT. 0.0) THEN

IF (BP(2) .LT. BP(1)) THEN
C Invalid initial / final value

IP(1) = 305020
CALL MSG(IP,RP,SP)

END IF
END IF
IF (BP(3) .LT. 0.0) THEN

IF (BP(1) .LT. BP(2)) THEN
C Invalid initial / final value

IP(1) = 305020
CALL MSG(IP,RP,SP)

END IF
END IF
IF (IP(1) .NE. 0) RETURN
IP(12) = INT((BP(2) - BP(1) + BP(3)) / BP(3))
IF (INT((BP(2) - BP(1) + BP(3)) / BP(3) + 1.E-5)

& .GT. IP(12)) THEN
IP(12) = IP(12) + 1

END IF
ELSE

C Destructor call
END IF
RETURN

END IF
C---- Standard call --

IF (IP(13) .EQ. 0) THEN
C First call in DO loop

IP(11) = 1
IP(13) = 1

END IF
IF (IP(11) .LE. IP(12)) THEN

OUT(1) = BP(1) + (IP(11)-1) * BP(3)
IP(11) = IP(11) + 1
IF (IP(5) .EQ. 1) THEN

C There is an input connected
C Hence, DO is used as a subtimer, ie set jump to one

IP(6) = 1
END IF

ELSE
IF (IP(5) .EQ. 0) THEN

C There is no input connected
C Hence, DO is used as a timer, ie set LEND true

IP(2) = 2
END IF

C Prepare next DO loop
IP(13) = 0

END IF
RETURN
END

C---

Let us start with the Constructor call. At first, a few plausibility checks are made: Is the

Tutorial

12.4.6 The I-block IF 313

increment different from zero? Does the sign of the increment fit the order of initial and
final value? If something is wrong, the block returns and inselEngine will reject model
execution.

If everything is okay so far, the constructor call calculates the number of required calls
to the DO block and saves the number of calls in IP(12).

The first thing the DO block checks in standard call is, whether the block is called in
standard call for the first time. More precisely, the block checks whether IP(13) is equal
to zero. Remember, that the DO block can be nested. This means, that there can be many
“first calls” to the block. Consequently, IP(11) is used as counter for the number of calls
and IP(13) is used as reset memory.

As long as IP(11) has not reached the number of IP(12) calls output one is incremented
by BP(3) and IP(11) keeps track of the number of calls. The next statement

IF (IP(5) .EQ. 1) THEN
C There is an input connected
C Hence, DO is used as a subtimer, ie set jump to one

IP(6) = 1
END IF

requires your full concentration.

Remember, IP(5) contains the actual number of block inputs. The DO block has one
optional input. If it has an input, the DO block is used as a subtimer, if not, it is the main
timer in the simulation model. If the DO block is a subtimer, it has a negative jump
parameter, pointing to the preceding timer in the calculation list. In this case, the DO
block has to give control to the preceding timer, when the DO block itself has reached its
final call.

But as long as the DO loop is running the successor of the DO block in the calculation
list has to be called next. The DO block informs the calling inselEngine by setting the
jump parameter IP(6) to a value of one.

The last ELSE branch handles the last call case. When the DO block has no input – i. e., is
the main timer – it sets the logical end condition to true, i. e., sets IP(2) to a value of
two, which means that the inselEngine has to switch to Destructor call mode. In any
case the DO block prepares for a new first call by setting IP(13) to zero.

In conclusion, we have learnt two basic mechanisms in INSEL. First, non-StandardTwo INSEL block
mechanisms blocks can inform the inselEngine not to use the jump parameter from the calculation

list, but to call the block’s successor in the list. Second, blocks can inform the
inselEngine to end a simulation run and switch to Destructor call mode.

12.4.6 The I-block IF

It is easy now to understand the fundamental I-block IF. Here comes the code:

Tutorial

314 12. Programming INSEL blocks

C---
SUBROUTINE FB0022(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’IF’
&, OPM = 1
&, INMIN = 2
&, INS = 2
&, OUTS = 1
&, IPS = 10
&, RPS = 0
&, DPS = 0
&, BPMIN = 0
&, BPS = 0
&, SPMIN = 0
&, SPS = 0
&, GROUP = 6)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,
& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)

ELSE IF (IP(2) .EQ. 1) THEN
C Constructor call

ELSE
C Destructor call

END IF
RETURN

END IF
C---- Standard call --

IF (ANINT(IN(2)) .NE. 0) THEN
IP(6) = 1
OUT(1) = IN(1)

END IF
RETURN
END

C---

The Constructor and Destructor call sections are empty. Remember that the IF block
jumps over its successors (positive jump parameter) as long as the condition input two is
false, i. e., zero. When the condition input is true (any non-zero integer), the IF block
must give control to its successors by setting the jump parameter IP(6) to one and by
passing input one to output one – that’s it.

12.4.7 The D-block DELAY

Tutorial

12.4.7 The D-block DELAY 315

The fundamental D-block DELAY is easy to understand, too.

C---
SUBROUTINE FB0015(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’DELAY’
&, OPM = 1
&, INMIN = 1
&, INS = 10
&, OUTS = 10
&, IPS = 10
&, RPS = 0
&, DPS = 0
&, BPMIN = 0
&, BPS = 10
&, SPMIN = 0
&, SPS = 0
&, GROUP = 5)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)
INTEGER I

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,
& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)

ELSE IF (IP(2) .EQ. 1) THEN
C Constructor call
C Initialize the output signal

DO I = 1,IP(5)
OUT(I) = BP(I)

END DO
ELSE

C Destructor call
END IF
RETURN

END IF
C---- Standard call --

DO I = 1,IP(5)
OUT(I) = IN(I)

END DO
RETURN
END

C---

The Constructor call initializes all outputs by the corresponding parameters. In Standard
call the IP(5) block inputs are just written to the outputs. Remember that the delay
effect is based on the fact that D-blocks are always sorted to the end of the calculation

Tutorial

316 12. Programming INSEL blocks

list.

12.4.8 The L-block NULL

Our last INSEL block source code example is the slightly more complex NULL block. Let
us look a the code portion by portion. Since the block uses several BPs and IPs, we
provide the documentation header first:

C---
C #Begin
C #Block NULL
C #Description
C The NULL block searches a root of a continuous function.
C #Layout
C #Inputs 1
C #Outputs 2
C #Parameters 6
C #Strings 0
C #Group L
C #Details
C #Inputs
C #IN(1) Signal $y = f(x)$, which corresponds to the output x
C #Outputs
C #OUT(1) Signal x which is varied iteratively until $y
C = 0 \pm \Delta y_{\rm max}$. This output has to be
C connected to a corresponding TOL block.
C #OUT(2) Indicator i for iteration failure
C \begin{detaillist}
C \item[0] Solution found
C \item[1] Too many iterations
C \item[2] Both function values positive at boundaries
C \item[3] Both function values negative at boundaries
C \item[4] Found trivial solution
C \end{detaillist}
C #Parameters
C #BP(1) Mode
C \begin{detaillist}
C \item[0] Involution algorithm (in the current version
C this is the only option)
C \end{detaillist}
C #BP(2) Lower limit $x_{\rm min}$ of the iteration interval
C #BP(3) Upper limit $x_{\rm max}$ of the iteration intervall
C #BP(4) Tolerance $\Delta y_{\rm max}$ for the accuracy of the
C calculated root
C #BP(5) Maximum number $N_{\rm max}$ of iterations
C #BP(6) Output value for x which is returned when the number
C $N_{\rm max}$ of iterations is reached or no solution was
C found within the iteration interval
C #Strings
C #None
C #Internals
C #Integers
C #IP(1) Return code

Tutorial

12.4.8 The L-block NULL 317

C #IP(2) Call mode
C \begin{detaillist}
C \item[-1] Identification call
C \item[0] Standard call
C \item[1] Constructor call
C \item[2] Destructor call
C \end{detaillist}
C #IP(3) Operation mode
C #IP(4) User defined block number
C #IP(5) Number of current block inputs
C #IP(6) Jump parameter
C #IP(7) Debug level
C #IP(8..10) Reserved
C #IP(11) Integer representation of mode BP(1)
C #IP(12) Counter for the number of calls
C #IP(13) Memory for unsuccessful iteration
C #IP(14) Memory for position of TOL block (no longer used)
C #IP(15) Set to 1 when NULL found a postive function value in the
C iteration interval, otherwise 0
C #IP(16) Set to 1 when NULL found a negative function value in
C the iteration interval, otherwise 0
C #IP(17) Counter for the number of no solution in the iteration
C interval
C #IP(18) Counter for the number of unsuccessful iterations
C #IP(19) Counter for the number of trivial solutions
C #Reals
C #RP(1) Left interval limit
C #RP(2) Function value at left limit
C #RP(3) Right interval limit
C #RP(4) Function value at right limit
C #Doubles
C #None
C #Dependencies
C #Subroutine ID
C #Subroutine MSG
C #Authors
C Juergen Schumacher
C #End
C---

As can be seen from BP(1) an involution algorithm is the only implemented option in
the current version (December 2011). All parameters including the indicator OUT(2)
should be clear from the description. So let us inspect the declaration and Constructor
and Destructor call sections.

C---
SUBROUTINE FB0054(IN,OUT,IP,RP,DP,BP,SP)
IMPLICIT NONE
CHARACTER*1024 BNAMES
INTEGER INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,
& GROUP,OPM
PARAMETER (BNAMES = ’NULL’
&, OPM = 1

Tutorial

318 12. Programming INSEL blocks

&, INMIN = 1
&, INS = 1
&, OUTS = 2
&, IPS = 19
&, RPS = 4
&, DPS = 0
&, BPMIN = 6
&, BPS = 6
&, SPMIN = 0
&, SPS = 0
&, GROUP = 4)
CHARACTER*1024 SP(SPS+1)
DOUBLE PRECISION DP(DPS+1)
INTEGER IP(IPS+1)
REAL IN(INS+1),OUT(OUTS+1),RP(RPS+1),BP(BPS+1)

C---
IF (IP(2) .NE. 0) THEN

IF (IP(2) .EQ. -1) THEN
C Identification call

CALL ID(IN,OUT,IP,RP,DP,BP,SP,BNAMES,OPM,
& INMIN,INS,OUTS,IPS,RPS,DPS,BPMIN,BPS,SPMIN,SPS,GROUP)

ELSE IF (IP(2) .EQ. 1) THEN
C Constructor call

IP(11) = ANINT(BP(1))
IF (IP(3) .LT. 0) IP(11) = IP(11) - 1
IF (IP(11) .LT. 0 .OR. IP(11) .GT. 0) THEN

C Invalid mode
IP(1) = 305011
CALL MSG(IP,RP,SP)

END IF
IP(11) = IP(11) + 1
IP(12) = 0
IF (BP(3) .LT. BP(2)) THEN

C Invalid iteration interval
IP(1) = 305092
CALL MSG(IP,RP,SP)

END IF
IF (BP(4) .LE. 0.0) THEN

C Invalid error tolerance
IP(1) = 305051
CALL MSG(IP,RP,SP)

END IF
IF (ANINT(BP(5)) .LT. 1) THEN

C Invalid number of maximal iterations
IP(1) = 305093
CALL MSG(IP,RP,SP)

END IF
ELSE

C Destructor call
IF (IP(17) + IP(18) .GT. 0) THEN

C Display number of unsuccessful iterations
IP(9) = IP(17) + IP(18)
IP(1) = 205097
CALL MSG(IP,RP,SP)

Tutorial

12.4.8 The L-block NULL 319

END IF
IF (IP(19) .GT. 0) THEN

C Display number of trivial solutions
IP(9) = IP(19)
IP(1) = 205151
CALL MSG(IP,RP,SP)

END IF
END IF
RETURN

END IF

In the declaration section GROUP = 4 makes NULL to an L-block.

The Constructor call checks the mode parameter first. INSEL 7, HP VEE, and INSEL 8Mode 0 vs. 1
with VSEit follow the convention that the mode starts counting with zero. In graphical
user interfaces pop-up menus usually use zero to indicate the first item. insel 8 started to
support MATLAB and Simulink with the Renewable Energy blockset. Simulink uses
index 1 for the the first item in pop-up menus. So, we distinguish both cases by positive
or negative operation modes in IP(3). If positive, the first item has index zero, if
positive, the first item is considered as one. What follows are three simple plausibility
checks for parameters two to five.

We had seen from the DIV block already, that a typical use of Destructor calls are
summaries of errors and warnings. The same applies here.

Next we check how the NULL block uses the first three calls to initialize.

C---- Standard call --
OUT(2) = 0.0
GO TO (1) IP(11)

1 CONTINUE
C Method of nested intervals

IF (IP(12) .EQ. 0) THEN
IP(12) = 1
OUT(1) = BP(2)
RETURN

END IF
IP(12) = IP(12) + 1
IF (IP(12) .EQ. 2) THEN

C Evaluate first function value
IF (ABS(IN(1)) .LE. BP(4)) THEN

C Found trivial solution
IP(13) = 1
OUT(1) = BP(6)
OUT(2) = 4.0
IF (IP(19) .EQ. 0) THEN

IP(1) = 205152
CALL MSG(IP,RP,SP)
IP(19) = 1

ELSE
IP(19) = IP(19) + 1

Tutorial

320 12. Programming INSEL blocks

END IF
RETURN

END IF
RP(1) = BP(2)
RP(2) = IN(1)
OUT(1) = BP(3)
RETURN

END IF
IF (IP(12) .EQ. 3) THEN

C Evaluate second function value
IF (ABS(IN(1)) .LE. BP(4)) THEN

C Found trivial solution
IF (IP(13) .EQ. 0) THEN

IP(13) = 1
OUT(1) = BP(6)
OUT(2) = 4.0
IF (IP(19) .EQ. 0) THEN

IP(1) = 205152
CALL MSG(IP,RP,SP)
IP(19) = 1

ELSE
IP(19) = IP(19) + 1

END IF
ELSE

C Iteration has already been done unsuccessfully
IP(6) = 1
IP(12) = 0
IP(13) = 0

END IF
RETURN

END IF
RP(3) = BP(3)
RP(4) = IN(1)
IP(15) = 0
IP(16) = 0
IF (RP(2) .GT. 0.0 .OR. RP(4) .GT. 0.0) IP(15) = 1
IF (RP(2) .LT. 0.0 .OR. RP(4) .LT. 0.0) IP(16) = 1
IF (IP(15) .EQ. 1 .AND. IP(16) .EQ. 1) THEN

OUT(1) = BP(2) + (BP(3) - BP(2)) / 2.0
ELSE

C There is no solution in the iteration interval
IF (IP(17) .EQ. 0) THEN

IP(1) = 205096
CALL MSG(IP,RP,SP)
IP(17) = 1

ELSE
IP(17) = IP(17) + 1

END IF
IP(13) = 1
OUT(1) = BP(6)
IF (RP(2) .GT. 0.0 .AND. RP(4) .GT. 0.0) THEN

OUT(2) = 2.0
END IF
IF (RP(2) .LT. 0.0 .AND. RP(4) .LT. 0.0) THEN

Tutorial

12.4.8 The L-block NULL 321

OUT(2) = 3.0
END IF

END IF
RETURN

END IF

On its first call in Standard call the NULL block simply outputs the parameter which
defines the left interval boundary value BP(2). In the second call the NULL block
receives the function value IN(1) which corresponds to BP(2). Should this value be less
than the accuracy tolerance defined as BP(4) then there is a trivial solution. When this
happens for the first time, a warning message is displayed. Apart from this exception,
usually BP(2) and its corresponding function value are stored in RP(1) and RP(2),
respectively.

The third call again check for the trivial case first. If false, BP(3) and IN(1) are stored in
RP(3) and RP(4) and the algorithm starts. In order to have a solution in the interval
[RP(1),RP(3)], one of the parameters RP(2) and RP(4) must be positive, while the
other one must be negative. If this is the case, it follows from the continuity of the
function to analyze that there must be a root in the iteration interval and the NULL
block puts the center of the iteration interval on output one. Otherwise a warning
message is generated.

The core algorithm loop is this:

IF (ABS(IN(1)) .LE. BP(4)) THEN
C Found the solution

IP(6) = 1
IP(12) = 0
IP(13) = 0
RETURN

END IF
IF (IP(13) .EQ. 1) THEN

C Iteration has already been done unsuccessfully
IP(6) = 1
IP(12) = 0
IP(13) = 0
RETURN

END IF
IF (IP(12) .GE. BP(5)) THEN

C Maximum number of iterations exceeded
IF (IP(18) .EQ. 0) THEN

IP(1) = 205098
CALL MSG(IP,RP,SP)
IP(18) = 1

ELSE
IP(18) = IP(18) + 1

END IF
IP(13) = 1
OUT(1) = BP(6)
OUT(2) = 1.0
RETURN

Tutorial

322 12. Programming INSEL blocks

END IF
C Determine next x

IF (IN(1) .GT. 0.0) THEN
IF (RP(2) .GT. 0.0) THEN

RP(1) = OUT(1)
RP(2) = IN(1)

ELSE
RP(3) = OUT(1)
RP(4) = IN(1)

END IF
ELSE

IF (RP(2) .GT. 0.0) THEN
RP(3) = OUT(1)
RP(4) = IN(1)

ELSE
RP(1) = OUT(1)
RP(2) = IN(1)

END IF
END IF
OUT(1) = (RP(1) + RP(3)) / 2.0
RETURN
END

C---

At first, three conditions are tested. When the solution is found, the block resets IP(12)
and IP(13) to zero and – as we have seen several times already – sets the jump
parameter IP(6) to one indicating the end of the loop and the successor of the NULL
block (and not the TOL) is called by inselEngine. The other two cases are that IP(13)
has a value of one i. e., there was a trivial solution or that the maximum number of
iterations has been reached.

As long as all three conditions are false a new interval center will be determined andExercise 12.7
written to output one. Please read and understand, how the RPs are updated in every
iteration step and how the case-by-case analysis is made in which interval the search for
the root continues.

12.5 Interfacing INSEL with Python

Python data types:

tuples (a, b, c): ordered “collections” of unchangeable data (read-only), written with
round brackets

lists [a, b, c]: ordered “collections” of changeable data (read-write), written with
square brackets

Python does not have built-in support for arrays, but Python lists can be used instead.

In Python we have lists that serve the purpose of arrays, but they are slow to process.

Tutorial

12.5. Interfacing INSEL with Python 323

NumPy aims to provide an array object that is up to fifty times faster than traditional
Python lists. NumPy arrays are stored at one continuous place in memory unlike lists, so
processes can access and manipulate them very efficiently.

Tutorial

13 :: Programming INSEL extensions in Eclipse

When you have made your way down to this section of the Tutorial then you have
probably already written several INSEL blocks on your own. At some stage you will
certainly wish to have more support in programming and debugging than just the INSEL
Block Wizard, your text editor, and the restricted debugging features in INSEL itself.

Programmers worldwide use integrated development environments (IDEs) in their daily
work. Many IDEs are available, like Microsoft’s Visual Studio, Sun’s Netbeans, or IBM’s
Eclipse, to mention just a few. Visual Studio is commercial software, Netbeans and
Eclipse are open-source projects.

Eclipse IDE. It was developed at IBM and first released in the year 2001.

some history: Text editors in general

SUN: Stanford University Network Netbeans (Sun Microsystems) vs. Eclipse (IBM) Name
gemein!

NetBeans started as a student project in 1996. When Oracle acquired Sun in 2010,
NetBeans became part of Oracle, which sees NetBeans as the official IDE for the Java
Platform.

first version November 7, 2001

creation of the independent Eclipse Foundation in 2004

Sehr gute Seite fuer Eclipse basics:

https://www.ics.uci.edu/~pattis/common/handouts/introtopythonineclipse/

This section is meant as a short introduction into the installation of Eclipse and some
compiler tools for Java, C/C++, Fortran, Ruby, to the novice Eclipse user.

The following software tools/plugins and their installation will be described:q qq q Java Development Kit (JDK)q qq q Eclipseq qq q Xcode command line toolsq qq q C/C++ Development Tools (CDT)q qq q Fortran Development Tools (Photran)q qq q Ruby Development Toolsq qq q Window Builderq qq q MacTeX typesetting systemq qq q Subversion

13.1. Java Development Kit 325

Since Eclipse is written in Java the basic installation of Eclipse needs a working Java
Runtime Environment. Therefor, we start with the installation of a Java package.

13.1 Java Development Kit

Java is cross-platform JVM

Java was developed by Sun Microsystems. On November 13, 2006, Sun Microsystems
made the bulk of its implementation of Java available under the GNU General Public
License (GPL).

later acquired by the Oracle Corporation.

Several Java packages, recommendation JDK (Java SE Development Kit) for Java
Developers which includes a complete Java Runtime Environment plus tools for
developing, debugging, and monitoring Java applications.

Download the JDK from www.oracle.com. The recommended version (November 2017)
is Version 8 Update 152.

For Mac OS X download the .dmg file and install the JDK by a double-click. When you
open a Terminal, which java tells you that the java command has been installed at
/usr/bin/java. Typing java -version returns the version number, 1.8.0_152 in this
case. You are now ready to install Eclipse.

13.2 Eclipse

Download Eclipse from www.eclipse.org. The current version (November 2017) is the
Oxygen 1a Release (4.7.1a). A double-click on file eclipse-inst-mac64.tar.gz (48.1
MB) will extract the Eclipse installer.app. Another double-click on the installer
.app let’s you choose between different Eclipse IDE versions, like Eclipse IDE for Java
Developers, or Eclipse IDE for C/C++ Developers, for instance. Which version you choose
is a matter of personal taste. Language support and other features can later be combined
into any of the default packages.

Tutorial

326 13. Programming INSEL extensions in Eclipse

Next, the installer asks for an Installation Folder. Again, the destination is your personal
choice. By default, the installer suggests to create a directory named eclipse your home
directory, Eclipse.app will then be installed in a subdirectory named cpp-oxygen,
java-oxygen, or similar.

When you launch the application, Eclipse will ask you for a workspace directory. This is
the directory where you usually do your Eclipse work. If you wish, select the Use this as
the default and do not ask again check box. The workspace directory can be changed at
any time via Edit > Switch Workspace.

Eclipse should welcome you (with the Java perspective, for instance).

The Eclipse window shows a menu and tool bar, the Package Explorer will be discussed
in a minute, the central pane is a text area, at the right side a Task List and an Outline
Perspective are displayed, at the bottom several Views are shown.

Some Eclipse terminology

If you are connected to the Internet via a Proxy server open the dialog Eclipse >Internet
connection Preferences... > General > Network Connections and set the proxy configuration.

13.2.1 A first Java project

In order to test the Eclipse installation, start eclipse – if not already started. Create a
new Java project via File > New > Project > Java Project.

Tutorial

13.2.1 A first Java project 327

The only thing to do here is to give the project a name, helloJava, for instance, and
click the Finish button. Please observe that you can specify the JRE version you wish to
use here.

The Package Explorer window shows that Eclipse has created a project with the desired
name and a directory named src for the .java source file.

The next step is to create a new Java class via File > New > Class. At first, the hint that
class names in Java should always start with an uppercase letter. So, the natural name
for our first Java class is HelloJava.

Tutorial

328 13. Programming INSEL extensions in Eclipse

When you have a closer look at the New Java Class window you’ll observe that Eclipse
suggested to create the new Java class in a package named helloJava. So, what is a
package in Java?

The Java Tutorial says: “A package is a namespace that organizes a set of related classesJava package
or interfaces. Conceptually you can think of packages as being similar to different
folders on your computer. . . . Because software written in Java programming language
can be composed of hundreds or thousands of individual classes, it makes sense to keep
things organized by placing related classes and interfaces into packages.”

In order to avoid duplication of names with programmers writing Java classes andNaming
conventions interfaces worldwide package names should be unique. For instance, most companies

use their reversed Internet domain name to begin their package names. If the domain
name contains a hyphen or any other special character, or starts with a digit, or contains
a reserved Java keyword like int the suggested convention is to add an underscore. For
example 1ofmy-domains.int would turn into int_._1ofmy_domains.

Since we talk about INSEL, we suggest to use the insel.eu domain to begin the package
name.

A second convention is that package names should be written in all lowercase to avoid
conflicts with class or interface names which should always start with an uppercase
letter.

Tutorial

13.2.1 A first Java project 329

In the context of INSEL development, we have reserved the following package names for
us: q qq q eu.insel.vseitq qq q eu.insel.blockq qq q eu.insel.userblockq qq q eu.insel.opensource
If you intend to write a package for use with INSEL, please contact us, so that we can
register your package name. If you intend to write a proprietary package, please name it
using your research centers or companies Internet domain, e. g., de.dlr.csp or
com.firm.ourpackage.

Next, create a new package in the source directory src via the File > New > PackageNew Package
dialog.

Give the package a name and click Finish.

Coming back to the creation of the class you will see that Eclipse suggests the packageNew class
name. Remember that class names start with an uppercase letter, like HelloJava for
instance.

If you mark the public static void main(String[] args) check box, Eclipse will
automatically create the main method which is required by any Java class. This is the
code you get:

package helloJava;

public class HelloJava {
public static void main(String[] args) {

// TODO Auto-generated method stub
}

}

Tutorial

330 13. Programming INSEL extensions in Eclipse

You may now wish to add something like

System.out.println(”Hello Java”);

to the main method, save the file and press the Run button (the round green one with
the white triangle) and observe how the string Hello Java is displayed in the Console
pane at the bottom of the Eclipse window.

A last remark before we close the Java topic in Eclipse. In Eclipse nearly everything canEclipse Preferences
be tailored to user-specific needs and wishes. For example, the behavior of text editors
can be settled in the Text Editors pane, which can be opened via the Eclipse > Preferences
dialog.

When you examine the generated code in more detail you will see, that the indention of
the code lines is four characters by default. However, there aren’t four blank characters
in the code, but tab characters with a displayed width of four spaces – as defined in the
Text Editors pane. This can be made visible by marking the Show whitespace characters
check box.

Tutorial

13.2.1 A first Java project 331

Another detail can be observed in this view: Mac OS X uses a one-byte line ending
character LF (line feed) whereas older versions of Mac OS used CR (carriage return),
Unix and Linux use LF, all Windows versions use CR LF since the beginning. For these
reasons you might wish to always have whitespace characters visible in your text editor.

Everybody wishes and has his or her own style. Our style, the INSEL-developer style, is
to use three bytes and space characters instead of tabs. One reason being, that the
complete INSEL documentation is written in LATEX, and LATEX doesn’t like tabs that much.
So we don’t either and recommend to change the Displayed tab width value to 3 and set
the Insert spaces for tabs check box.

Line numbers are programmer’s friends. They often help to understand compiler
messages better. So you might like to set the Show line numbers check box.

If you wish to write your Java code one hundred percent INSEL compatible you can useInselJavaFormatter
the InselJavaFormat.xml formatter wo liegt diese Datei? for “pretty-printing.” You can
import the INSEL Java Formatter in Eclipse via the File > Properties dialog (if your
current project is a Java Project) or via the Eclipse > Preferences dialog by using
Configure Workspace Settings....

Tutorial

332 13. Programming INSEL extensions in Eclipse

A last hint at this point is that Eclipse provides a check box Save automatically before
build which can be found under Eclipse > Preferences on the General > Workspace pane.
This feature is very practical.

13.2.2 Installing Eclipse plugins

different mechanisms (siehe auch Eclipse Buch 3.2 Seite 16 f.)

Auslieferung mit einem Installationsmanager

Auslieferung in Form einer URL

Auslieferung als ZIP Datei

Extension Sites

Tutorial

13.3. C/C++ Development Tools (CDT) 333

13.3 C/C++ Development Tools (CDT)

Eclipse provides much more than just an IDE for Java programmers. Hundreds of
plugins are available for all kind of Eclipse extension. For C/C++ programmers, the most
important Eclipse plugin is CDT (C/C++ Development Tools), a plugin for the
development of C or C++ code. CDT does not include a C or C++ compiler. Therefore, an
installation of a C/C++ compiler is a necessary prerequisite if you want to use CDT.

There are several ways how to install compilers in Mac OS X. Many installations comeCompiler
installation with an EXPLAIN Xcode 9.0.1

Xcode

Check if the full Xcode package is installed:

type xcode-select -

If the answer is

/Applications/Xcode.app/Contents/Developer

then the full Xcode package is already installed. Otherwise, if an error like

error: unable to get active developer directory

is returned you will need to update Xcode to the newest version (Check for updates in
the App Store).

Assuming that you have a C/C++ compiler installed on your computer, open the Help >New Software
mechanism in

Eclipse
Install New Software... dialog in Eclipse. This is the main mechanism of how to install
new software into Eclipse. When you open the dialog a window similar to the following
one should open:

Tutorial

334 13. Programming INSEL extensions in Eclipse

Tutorial

13.3. C/C++ Development Tools (CDT) 335

You can check your Eclipse installation for available sites by opening the Work with
pull-down menu. If no sites are available, open the Add Repository dialog by a click on
the Add... button.

You can check your eclipse installation for available sites by opening the Work with
pull-down menu. If no sites are available, click on the Add... button open and enter
http://download.eclipse.org/releases/oxygen in Location text field of the Add
Repository dialog. Now browse to the Programming Languages item and mark the C/C++
Development Tools check box.

Tutorial

336 13. Programming INSEL extensions in Eclipse

Click Next to continue. During installation, license terms have to be accepted. When the
installation is finished, a restart of Eclipse is necessary and Eclipse welcomes you with
CDT available.

Now, when you choose File > New > Project... eclispe offers C/C++ projects.Hello C++ example

As a first test, we choose the default Executable project Hello World C++ Project and
click Finish.

As a first test, choose a C++ Managed Build project and the default Executable project
Hello World C++ Project.

Tutorial

13.3. C/C++ Development Tools (CDT) 337

Please observe that Eclipse automatically suggests to use the MacOSX GCC Toolchain,
i. e., the installed gcc compiler.

Perspectives erläutern.

Tutorial

338 13. Programming INSEL extensions in Eclipse

Not much has happened. The Package Explorer has turned into a Project Explorer, a
couple of new views, like Console appear at the bottom window and a new C/C++
Perspective shows up in the upper right corner of the Eclipse window.

Simply running the project file does not work – since we have not yet compiled and
linked the executable. We can do so by choosing the Project > Build Project dialog or the
“hammer” shortcut. Running the executable bravely shows us the default
!!!Hello World!!! string in the Console window.

13.4 Fortran Development Tools (Photran)

Photran is an integrated development environment and refactoring tool for Fortran.
Photran is based on Eclipse and CDT. It supports all Fortran standards from Fortran 77
(our recommended standard) to Fortran 2008.

The installation of Photran into Eclipse is straight forward and very similar to the CDT
installation. Hence, open Help > Install New Software..., browse to Programming
Languages and select the Fortran Development Tools (Photran) check box.

Tutorial

13.4. Fortran Development Tools (Photran) 339

Click Next to continue. During the installation, license terms have to be accepted. When
the installation is finished, a restart of Eclipse is necessary.

Ist das noch aktuell? In case, your Eclipse version does not offer a Photran package youWorkaround
might try this: Start Eclipse, then download the latest Photran zip file from
http://wiki.eclipse.org/PTP/photran/builds click Help > Install New Software...,
click the Add... button, click the Archive... button, choose the zip file you downloaded,
click OK to close the Add Site dialog. This will return you to the Install dialog. Expand
Photran (Fortran Development Tools) and check the box next to Photran End-User
Runtime. If you are running Linux and have the Intel Fortran Compiler installed, or if
you are on a Macintosh and have the IBM XL Fortran compiler installed, expand Fortran
Compiler Support and select the appropriate compiler. Click the Next button If you get
an error message, see below for troubleshooting information. Click the Finish button
and agree to the license to complete the installation.

If you are using gfortran the compiler is installed in /usr/local/bin which is not onA hint for Mac OS
X users the PATH by default. If you are launching Eclipse from a Terminal, the PATH can be set

by modifying /etc/paths. However, if you are launching Eclipse from the Finder or the
Dock, then the PATH is not obtained from the shell or /etc/paths. Instead, it is
obtained from ~/.MacOSX/environment.plist.

Seems like this mechanismn was removed with OSX Lion. Use Eclipse ... Preferences ...
C/C++ ... Build ... Environment and add Variable PATH with Value (e. g., /usr/local/bin)
and check the Append variables to native environment check box. An alternative may
be to update /etc/paths.

The format of the environment.plist file is as follows (change the path appropriately).
If you create or edit this file, you will need to log out (or reboot) before the changes will
take effect.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC ”-//Apple Computer//DTD PLIST 1.0//EN”

”http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version=”1.0”>
<dict>
<key>PATH</key>

Tutorial

340 13. Programming INSEL extensions in Eclipse

<string>/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin
</string>
</dict>
</plist>

Eclipse suggests to change to the Fortran perspective, i. e., a view which is adapted to
Fortran programmers.

Now, when we choose the File > New > Project... menu item Eclispe offers FortranHello Fortran
example projects. As a first test, we choose the Executable (Gnu Fortran on Windows) and click

Finish. Please observe that Eclipse automatically suggests to use the GCC Fortran
toolchain.

Now Eclipse suggests to change to the Fortran perspective again, we agree. We find the
new project helloFortran in the Fortran Projects tree > remembering that helloC++ and
helloJava are not Fortran projects > confusing.

In order to be compatible with the CDT and Java project structure, we create a src folder
for the Fortran sources via File > New > Source Folder and type in the Folder name src.

The next step is to create a new Fortran source file, named helloFortran.f, for
example, via File > New > Source File.

Tutorial

13.4. Fortran Development Tools (Photran) 341

We choose the Default fixed-form Fortran source file template and click Finish. When
we try to build the executable – remember the hammer – we get a list of 7 errors:

../src/helloFortran.f:1.1: Error: Non-numeric character in statement label at (1)

../src/helloFortran.f:1.1: Error: Unclassifiable statement at (1)

../src/helloFortran.f:2.5: Error: Non-numeric character in statement label at (1)

../src/helloFortran.f:2.5: Error: Unclassifiable statement at (1)

../src/helloFortran.f:3.1: Error: Non-numeric character in statement label at (1)

../src/helloFortran.f:3.1: Error: Unclassifiable statement at (1)
make: *** [src/helloFortran.o] Error 1

Not bad, for a start. What happened? Since we have decided to use the Fortran 77
standard in two places, i. e., (i) by using the .f extension and (ii) by choosing the default
fixed-form Fortran source file template, the gfortran compiler parses for Fortran 77
compatible statements. And these start in column 7, as indicated by the marked sixth
column – the column for continuation lines, as you may already know or remember
from our Fortran crash course. Hence, we indent the code correspondingly with space
characters, recompile and see the errors vanishing.

The program is correct but does nothing. So we add the statement

print*,”Hello Fortran!”

recompile and admire the result in the Console window.

Depending on you got here, you might be surprised to see the !!!Hello World!!!Troubleshooting
string from our helloC++ example. In this case highlight the helloFortran project, and
click the Run button again. Now Eclipse will display a dialog and asks you to select a
Run configuration.

Tutorial

342 13. Programming INSEL extensions in Eclipse

Choose Local Fortran Application and click OK. Depending on your installation Eclipse
offers several configurations.

A double-click on MinGW gdb finally achieves the desired result and we see Hello
Fortran! in the Console pane.

By the way, gdb stands for the Gnu Project Debugger. More about information aboutDebugging
debugging can be found at the project’s web page www.gnu.org/s/gdb, for example. If
you wish to try debugging on the fly, just click the Debug button in Eclipe’s toolbar (the
little six-leg bug, next to the Run button).

There is not much to debug in our helloFortran example. In general, debugging code is
extremely helpful in, yeah, debugging code and locating bugs.

In order to see the debugger work, you must set at least one Breakpoint where you wish
the debugger to pause execution. You can do so by a double-click on the corresponding
line margin. A small blue circle appears, indicating that there is a breakpoint. As usual,
Eclipse will ask you to confirm a switch of perspective.

And indeed, the execution pauses at the breakpoint and waits for your input, which
means that you are “in” the program. When your Fortran program contains variables,
you can observe their current values and many things more.

It is really worthwhile to learn more about debugging – but not here. We will shift our
attention to the next programing language: Ruby.

Tutorial

13.5. Ruby Development Tools 343

13.5 Ruby Development Tools

The Ruby plugin can easily be installed into Eclipse using the Help > Install New Software
mechanism. It is available at the http://download.eclipse.org/releases/oxygen
URL under Programming Lanuages as Dynamic Languages Toolkit > Ruby Development
Tools. Restarting Eclipse provides the new Ruby and Ruby Browsing perspectives.

However, when we create a new Ruby project, Eclipse displays that no Ruby interpreter
is configured yet.

Tutorial

344 13. Programming INSEL extensions in Eclipse

Finally the Ruby project is added to the project tree. As usual, create a source folder
named src in the Ruby project, add an Empty Ruby Script named helloRuby.rb to the
source folder, write some Ruby welcome code like

puts ”Hello Ruby”

and click the Run button. Eclipse let’s you select a way to run helloRuby.rb either as
Ruby Script or Ruby Test. Run helloRuby as Ruby Script and Hello Ruby will be displayed
in the Console tab.

13.6 Python (PyDev)

http://www.pydev.org/manual_101_install.html Alles (fast)wie Ruby

Please configure an interpreter before proceeding Qucick Auto-Config or Advanced
Auto-Config or Manual Config Create ’src’ folder and add it to PYTHONPATH

puts ”Hello Python”

and click the Run button. Eclipse let’s you select a way to run helloPython.py either as
Python Run or Python unit-test. Run helloPython as Python Run and Hello Python will be
displayed in the Console tab.

13.7 TeXlipse

For a long, long time no LATEX editor has been available for Eclipse. After many years of
stalled development on a project named TeXlipse the Eclipse Foundation took over its
maintenance in July 2017 and published Release 2.0.0 on October 18th, 2017. TeXlipse
supports features like syntax and semantic editing of LATEX documents, error
annotations, integration of PDF viewers, and much more.

The plugin can be found at http://download.eclipse.org/texlipse/2.0.0/.

After the usual Eclipse restart, a new LaTex project can be created and the LaTex Project
Wizard asks for a project name and the desired output format which can be either a .dvi,
.ps, or .pdf file. The respective build command will be set automatically by the project
wizard. TeXclipse offers several templates like article or blank, for instance.

Tutorial

13.8. WindowBuilder 345

Before the project can be built, it is necessary to configure TeXlipse. Go to Eclipse >

Preferences... > Texlipse > Builder Settings and browse to the bin directory of the TeX
distribution, usually /Library/TeX/texbin (if you have installed MacTeX) which is a
symbolic link to /usr/local/texlive/2017/bin/x86_64-darwin/.

OUTPUT

Pdf4Eclipse viewer

13.8 WindowBuilder

The graphical user interface of INSEL 8 is completely written in Java. At some stage you
might wish to add some graphical support to your own INSEL applications. A tool
which is very useful for that purpose is the WindowBuilder Pro Eclipse, which can be
fully integrated into Eclipse.

WindowBuilder Pro Eclipse is a tool for creation of RCP (Rich Client Platform), SWT
(Standard Widget Toolkit), and Swing UI’s (User Interfaces). The full package requires
the following plugins:

http://download.eclipse.org/windowbuilder/WB/integration/3.7 is the address
to work with in order to install all required components at once.

When you create a new WindowBuilder project via File > New > Other...
WindowBuilder offers several wizards.

Tutorial

346 13. Programming INSEL extensions in Eclipse

INSEL 8 is mainly based on Swing components. Hence, let us choose a Swing Designer >

Application Window.

Automatically the Swing Application wizard suggests to use our so far only Java project
and its source directory. As package we choose our already existing package
eu.insel.hellojava, the natural application name is HelloSwing – with capital H.
WindowBuilder creates Java code for us:

package eu.insel.hellojava;

import java.awt.EventQueue;
import javax.swing.JFrame;

Tutorial

13.8. WindowBuilder 347

public class HelloSwing
{

private JFrame frame;
/**
* Launch the application.
*/
public static void main(String[] args) {

EventQueue.invokeLater(new Runnable() {
public void run() {

try {
HelloSwing window = new HelloSwing();
window.frame.setVisible(true);

} catch (Exception e) {
e.printStackTrace();

}
}

});
}

/**
* Create the application.
*/
public HelloSwing() {

initialize();
}

/**
* Initialize the contents of the frame.
*/
private void initialize() {

frame = new JFrame();
frame.setBounds(100, 100, 450, 300);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

We can immediately launch the application via the Run button and see the empty
application window.

We will definitively not go into an attempt to explain the basics of Swing here, but at

Tutorial

348 13. Programming INSEL extensions in Eclipse

least, we want to see a Hello Swing! in the window. Hence, we enter the
WindowBuilder’s Design window.

At the bottom of the pane containing the Java code you see two tabs, Source and Design.New world
Most probably, you are currently in the Source pane. A click on the Design tab takes you
into a new world. We show only a small part of the WindowBuilder’s Palette:

The full window features a Structure view with its Components and Properties, the full
Palette with plenty of Swing components and – that is the best – a preview of your new
Swing application.

Before you can start to drag and drop components into the preview window, Swing
requires a Layout Manager. We choose a FlowLayout. The tooltip of the FlowLayout
says “A flow layout arranges components in a left-to-right flow, much like lines of text in
a paragraph. Flow layouts are typically used to arrange buttons in a panel. It will
arrange buttons left to right until no more buttons fit on the same line.”

When you select FlowLayout in the Components palette and move the mouse pointer to
the preview window, the preview window displays a green frame and a + sign,
indicating the ContentPanel as taget for the layout. Just drop the layout there.

You may then select the JLabel component and drop it in the preview window, too. Enter
some nice text like “Hello Swing!” and you are done. Saving and running the application
displays what we wanted.

Programming can be so easy and wonderful – sometimes!

The generated code is easy to read:

frame = new JFrame();
frame.setBounds(100, 100, 450, 300);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().setLayout(new FlowLayout(FlowLayout.CENTER, 5, 5));

Tutorial

13.8. WindowBuilder 349

JLabel lblNewLabel = new JLabel(”Hello Swing!”);
lblNewLabel.setHorizontalAlignment(SwingConstants.LEFT);
frame.getContentPane().add(lblNewLabel);

We stop our excursion to the WindowBuilder tool here. But we’ll come back at the end
of this section, when we use WindowBuilder to create an interface for a brand new
INSEL block.

We have gone a long path to reach this point, used four different programming
languages and could start working on new software. One part, however, is still missing
and that is Version Control – our next topic.

Tutorial

350 13. Programming INSEL extensions in Eclipse

13.9 Subversion (SVN)

Work on large software projects and projects in which more than one developer is
involved require proper organization and a software tool for version control. Such a tool
is Subversion. The Eclipse support for Subversion is in the hands of the Subversive
project which integrates SVN with the Eclipse platform since 2007. Today, the
Subversive project consists of the Subversive plugin for Eclipse and the Subversion
connectors, used for communication with SVN.

The plugin can be installed directly using the Help > Install New Software... dialog.
Expand the Collaboration group, select the Subversive SVN Team Provider checkbox,
finish the installation, and restart Eclipse.

The next step is to install SVN connectors which are required to work with SVN. OnceSVN connectors
the Subversive plugin is installed and Eclipse is rebooted, Subversive should
automatically display the dialog that shows Subversive SVN Connectors compatible
with the installed version of the plugin. Alternatively, you can install Subversive SVN
Connectors using Eclipse > Preferences... > Team > SVN. On the Connectors tab click the
Get connectors... button and the Install Connectors window should pop up.

Tutorial

13.9. Subversion (SVN) 351

BUGFIX

Michele Mariotti CLA Friend 2017-10-02 07:39:37 EDT
1. go to Help -> Install New Software...
2. fill URL with

”http://community.polarion.com/projects/subversive/download/eclipse/6.0/update-site/”
3. !!! UNCHECK ”Group Items By Category” !!!
4. check ”Subversive SVN Connectors” AND ”JavaHL 1.9.3 Win64 Binaries (Optional)”
5. click ”Next” and proceed as usual.

Choose the SVN Kit 1.8.14 (or newer) if you wish to be compatible with our Repository
Server at https://di-linux-services.de.

Click Finish and confirm both items (Subversive SVN Connectors and SVNKit 1.3.5
Implementation (optional)) After a while, a security warning shows up.

Tutorial

352 13. Programming INSEL extensions in Eclipse

We hope that we shouldn’t worry about it and confirm.

This step was the last in our installation act.

We can look at a summary of all installed plugins in Eclipse using the Help > Install
New Software > What is already installed? link in the lower right of the window. (In
Kepler this dialog can be found under About Eclipse and the Installation Details button.)

Now that our Eclipse installation is complete let us have a short look at the available
Perspectives via the Window > Open Perspective > Other... dialog.

Tutorial

13.9. Subversion (SVN) 353

In order to understand a little more about Subversion open the SVN Repository
Exploring perspective.

Create a new local repository for your personal use.Alternative 1

Connect to an already existing server-based repository.Alternative 2

Test account guests on https://di-linux-services.de. Create New RepositoryCase 1

Location

Tutorial

354 13. Programming INSEL extensions in Eclipse

Tutorial

13.9. Subversion (SVN) 355

InselOpenSourceLibrary Project on https://di-linux-services.de.Alternative 2

Repository name: https://di-linux-services.de/svn/opensource.

oder on SourceForge???

Then Subversion: right-click on project name, Team..., Share Project...

choose SVN,

Commit

Result:

in Trunk: loadSetup.

Tutorial

356 13. Programming INSEL extensions in Eclipse

Figure 13.1: Eclipse share project dialog.

Figure 13.2: Eclipse share project dialog.

Tutorial

13.9. Subversion (SVN) 357

Figure 13.3: Eclipse commit project dialog.

Figure 13.4: Eclipse loadSetup project.

Tutorial

358 13. Programming INSEL extensions in Eclipse

13.10 Eclipse as INSEL block IDE

13.10.1 A makefile project for user block development

all: inselUB
sourcesF := $(wildcard ../src/*.f)
sourcesC := $(wildcard ../src/*.cpp)
objectsF := $(patsubst %.f,%.o,$(sourcesF))
objectsC := $(patsubst %.cpp,%.o,$(sourcesC))
objects := $(patsubst ../src%,.%,$(objectsF)) $(patsubst ../src%,.%,$(objectsC))

inselUB:
@echo Building $@.dll ...
For DEBUG add option -g3 to g++ and gfortran compile statements
gfortran -c -O0 -Wall \

-fno-automatic -fno-underscoring -fmessage-length=0 $(sourcesF)
g++ -c -O0 -Wall -fmessage-length=0 $(sourcesC)
gfortran -shared -o../resources/inselUB.dll \

-Wall -L../resources -linselTools $(objects)
del *.o

clean:

13.10.2 Debugging user blocks in Eclipse

Bugs, bugs, bugs. Programming in general, or writing INSEL blocks in particular implies
the search for errors and bugs in the source code before a program can be executed
without failure.

The only way of finding errors and bugs before a program can be executed is to study
error messages generated by the compiler and correct the mistakes in the sources.
However, compiler messages are not always easy to interpret. Sometimes error messages
relate to statements which have nothing to do with the error’s source. But there is no
other way. Gaining experience with compiler messages is a tough experience every
programmer has to undergo.

Once code can be executed, usually a test phase starts where programmers check
whether their code executes in the expected way, which is not always the case for new

Tutorial

13.10.2 Debugging user blocks in Eclipse 359

code. Strange and unexpected results may appear or the program which executes the
new code even crashes. What then?

The old-fashioned way to find such bugs is to modify the source code, add output of
some intermediate results via print statements or dialog boxes – in INSEL the standard
way to output intermediate results is provided by the INSEL message system, as
described earlier in this Module on page 296 ff.

The process of searching, finding and removing bugs from source code is called
debugging. Fortunately, helpful tools exist which make it easier for programmers to find
bugs, so-called source-code debuggers. Such debuggers allow programmers to inspect
source code during step-by-step program execution and observe variables and their
current values without code changes.

In order to use debugging features it is necessary to compile the code to debug with a
debug flag. If you use the default INSEL makefile printed on page 359, the -g3 option is
added to the gfortran and g++ compile statements, so that the compile statements
become

gfortran -c -g3 -O0 -Wall \
-fno-automatic -fno-underscoring -fmessage-length=0 $(sourcesF)

g++ -c -g3 -O0 -Wall -fmessage-length=0 $(sourcesC)

The CDT plugin of Eclipse uses GDB, the GNU project debugger to translate userGDB debugger
interface actions into GDB commands in the background. Let us have a look at GDB at
work, using a practical, but simple example and use the inselUB library with the two
sample blocks CPP and FOR.

Before Eclipse can start a program in debug mode a debug configuration is required.

A new debug configuration can be created from the tool bar’s Debug pull-down menu
Debug Configurations... which opens the following dialog:

Tutorial

360 13. Programming INSEL extensions in Eclipse

Select C/C++ Application in the tree at the left edge of the window and use the New
button in the upper left corner to create a new configuration. Specify a name for the
configuration, e. g., Debug UB and browse to the project directory you wish to use for
debugging, e. g., ub.

Since inselUB.dll is a dynamic library it cannot directly be executed but must be
wrapped with an executable. In INSEL two candidates are available: insel_8.exe of the
installation directory and insel.exe of the resources directory. The first one starts the
graphical interface of INSEL, while insel.exe starts the inselEngine in a terminal. As a
start, let us choose the second option and browse to the file with the C/C++ application.

Click the Debug button to save your changes and to start the debugger immediately. By
default, Eclipse starts to rebuild the project files and compiles all sources. Next, Eclipse
suggests to switch to the Debug perspective.

Tutorial

13.10.2 Debugging user blocks in Eclipse 361

The Debug perspective is shown in the next figure:

Several views become visible, the most important being the Debug view with several
buttons to control execution. The red square button is used to terminate debugging, the
two yellow arrows step into and step over a statement, respectively – please check out
the buttons tool tips for further information. When debugging starts, the debugger
“stands” on the main() statement of insel.cpp

int main (int argc, char* argv[])
{

awaiting instructions to step into or step over the main function, for example. Since
INSEL users do not have access to the INSEL source code Eclipse displays some

Tutorial

362 13. Programming INSEL extensions in Eclipse

warnings in the windows’ title bar and in the text editor view. A click on the View
Disassemby... button shows some assembler code, like

004012d3: sub $0x28,%esp
004012d6: and $0xfffffff0,%esp
004012d9: mov $0x0,%eax
004012de: add $0xf,%eax
004012e1: add $0xf,%eax
004012e4: shr $0x4,%eax

which is not of much use for most of us. So let’s step into the main function and see
what happens. This is the console output:

(no debugging symbols found)
No source file named ub0001.cpp in loaded symbols.
No source file named ub0001.cpp in loaded symbols.
[New thread 3060.0xe8c]
(no debugging symbols found)
(no debugging symbols found)
(no debugging symbols found)
(no debugging symbols found)
(no debugging symbols found)
Single stepping until exit from function main,
which has no line number information.

Not too interesting. A second click on the Step Into button brings us to the end of the
main function and ends the debugger. insel.exe displays some text and informs us
about its usage and that a filename is missing:

This is insel 8.3 (c) 1986-2017 doppelintegral GmbH
Missing filename
Usage: insel filename [options]

filename
Any .insel model

[options]
-d Debug mode
-j insel called from Java
-l Show calculation list
-m Show .insel file
-s Syntax check only

Now, you are going to write your first real INSEL model – without the help of VSEit.cpp.insel
Enter the following lines in a text editor

s 1 const
p 1 17
s 2 cpp 1
p 2 3.14
s 3 screen 1 2

and save the file as cpp.insel for example. The name is arbitrary, but the file extension
has to be .insel. What does the text mean?

Tutorial

13.10.2 Debugging user blocks in Eclipse 363

As an experienced INSEL user you see three block names: CONST, CPP, and SCREEN –.insel syntax
not case sensitive – and three (arbitrary but unique) user-block numbers 1, 2, 3 for the
three blocks. The blocks are defined through a leading s which is short for structure.

A one follows the name of the CPP block which means that the CPP block uses the first
output of block number one as an input. The one and two following the name of the
SCREEN block mean that the SCREEN block gets inputs from block number one (the
CONST block) and from block number two (the CPP block).

Parameters are assigned to two blocks via p statements (short for parameter). The
connection between the block and the parameter values is associated through the
unique user-block number.

Connect the new INSEL model cpp.insel with the debug configuration of your userProgram
arguments block project. To do so, open the debug configuration click the Arguments tab and enter

the full path to cpp.insel in the Program arguments: text field.

In addition you must specify the path to the INSEL libraries in the same pane.

Do do so, uncheck the Use default checkbox and use the File System... button to browse
to the resources or Contents directory, respectively. Then click the Apply button and
close the window.

Our next aim is to run this INSEL model in debug mode and to pause execution in theBreakpoints
code of the CPP block. The source code of this block is available in file ub0001.cpp of
the \insel.work\inselUB\src directory located in your home directory. Please, open
ub0001.cpp now in the Debug perspective. Pausing execution is caused by so-called
breakpoints. Breakpoints can be added and/or removed by a double-click in the left
margin of a source code line, visually indicated by a small blue bullet:

Tutorial

364 13. Programming INSEL extensions in Eclipse

The screenshot shows two breakpoints in ub0001.cpp, one at the if statement which
checks for non-Standard calls, and one breakpoint at the statement which sets the first
output as sum of first input and first block parameter – in C notation as out[0] etc.

When you run the debug configuration now and click the step-into arrow, the debugger
does not run through the complete program but pauses at the first breakpoint that
you’ve set at the if statement, indicated by highlighting the code line.

Now you are free to wander through the code while it is executed – step into statements,
step out of statements, and so on. When you remember, how INSEL blocks work, the
first stop at if (IP[1] != 0) should result in an identification call. You can observe
this now by stepping into the if statement.

In conclusion, the first huge advantage of using a debugger is that you can observe howProgram flow
your code “really” executes – sometimes you will see that there is a big difference
compared to what you “thought” how your code executes.

The second advantage is that you can observe the current values of all variables yourCurrent values of
variables code uses at any time. The Variables view shows all relevant variables in the current

program status. Have a look at the status of the variables at the very first breakpoint
stop in ub0001.cpp:

Tutorial

13.10.2 Debugging user blocks in Eclipse 365

Remember, at this early stage of executing cpp.insel inselEngine calls block CPP (and
all other blocks in the model) in Identification Call, indicated by IP[1] = -1. You can
see that IP[1] currently has a value of -1, shown as ip → 2 by GDB and not in C
convention IP[1] – yes, messy, but we have to live with that idea of the C guys.

The in and out arrays are shown with a yellow background color. This means that these
variables have not yet been initialised – these variables will be initialised by inselEngine
after all identification calls have been completed.

As you may remember, all INSEL block arrays are over-dimensioned by one in order toOne dimension too
much avoid compiler warnings when the real dimension of an array is zero. Therefore, the

debugger shows 11 ip’s although block CPP only uses 10 ip’s.

DO NEVER ACCESS THE EXCESS BLOCK VARIABLES BECAUSE THEIR CONTENT IS
UNDEFINED.

This remark on quick-and-dirty INSEL programming ends our short excursion toFurther reading
debugging user-block libraries with Eclipse. More information about CDT debugging in
Eclipse can be found in the online documentation and plenty of books about the topic.

As seen on page 360 the creation of a debug configuration requires an executable likeA hint for Mac
Users insel.exe, for example. On a Mac computer INSEL is installed as an application bundle

named insel 8.app but application bundles are not accepted as executables in debug
configurations.

A way out of this dilemma is to create a C/C++ Attach to Application debug
configuration and connect it to the GDB (DSF) Process Launcher which can be selected
in the Debug Configuration window.

Tutorial

366 13. Programming INSEL extensions in Eclipse

Start insel 8.app and run the debug configuration of your library project in Eclipse.
The Select Process dialog opens.

Choose the java process and you’re done. Happy debugging.

Tutorial

PART IV :: Workshops

14 :: PV Heat Pump Storage System

In this workshop you will be guided step-by-step in the construction of a template for
the simulation of a simple system based on PV, a heat pump, and a thermal storage. A
given annual heat demand profile in hourly resolution will be used as input. The task of
the template is, to provide an easy method for the calculation of the component’s
performance and the required backup heat from additional devices. The level of
autonomy will be quantified as solar fraction, i. e., the percentage of energy
self-sufficiency.

In the data folder of this workshop’s root folder you can find a file namedLoad profile
ws1_load_profile.dat. This file contains two values per record, i. e., the ambient
temperature / ◦C and the heat demand / kWh. The total number of records is 8,760, i. e.,
one record for each hour of the year. The plotted data are as follows:

Reproduce the plot above and calculate the monthly means of ambient temperature andExercise 14.1
heat demand. as stored in file ws1_load_profile.dat.

1. 3.32 17.10
2. 4.86 16.79
3. 7.10 13.33
4. 11.73 8.65
5. 13.78 6.55
6. 19.21 4.70
7. 18.88 4.19
8. 17.81 3.92
9. 15.66 4.53
10. 13.04 7.44
11. 7.51 12.59
12. 3.67 16.72

370 14. PV Heat Pump Storage System

Heat pumps use electric power and a usually relatively low-temperature heat source asHeat pumps
input. Most heat pumps are either air(A) or water(W) based on the input side as well as
on the heat output side (IO). Hence, the four main types of heat pumps are (i) WW, (ii)
WA, (iii) AW, or (iv) AA.

In this workshop, we are going to use the WPL 18 E heat pump of the German
manufacturer Stiebel Eltron as a typical example. WPL 18 E is an air-in/water-out (AW)
heat pump.

Heat is extracted from the outside air via the air-side heat exchanger (evaporator). The
refrigerant evaporates and is compressed by a compressor. This requires electrical
energy. The refrigerant is now at a higher temperature level and releases the heat from
the air via another heat exchanger (condenser) to the heating system. Then the
refrigerant relaxes and the process starts again. At air temperatures below
approximately +7 ◦C, the humidity is reflected as frost on the evaporator fins. This
ripening is automatically defrosted. The resulting water is collected in the defrosting
trough and drained via a hose. In the defrosting phase, the fan switches off and the heat
pump cycle is reversed. The heat needed for the defrost is removed from the buffer. At
the end of the defrosting phase, the heat pump automatically switches back to heating
mode.

How can a heat pump be characterized? A typical ratio between electric input and
thermal output COP (coefficient of performance) is about 3, i. e., for one kWh of
electrical input, the heat output is three kWh. This corresponds approximately to the
efficiency of electric power plants, which is about 0.33.

Technical data sheets of heat pumps usually provide the electrical power demand and
the COP as a function of the temperature of the medium entering the heat pump, i. e.,
ambient air temperature Ta in our case. What can be a little confusing is that, the
temperature of the medium leaving the heat pump is called supply temperature. For the
time being, let us agree to use the term inlet temperature Tin for the temperature of the
air entering the heat pump and outlet temperature Tout for the temperature of the water
exiting the heat pump (and supplying some heat load demands).

The level-of-detail at which manufacturers provide technical data about their heat
pumps varies a lot. In case of WPL 18 E, Stiebel Eltron provides a printed heating power
diagram, showing the electrical demand, the COPs, and the resulting heating power as
functions of the ambient temperature, i. e., the inlet temperature, using the outlet
temperature as a curve parameter. The values have been manually transfered from the
power diagram to numerical data and these are summarized in the follwing table:

Tutorial

371

Pel / kW COPs
---- Tout / degC ---- ---- Tout / degC ----

Tin 35 50 60 Tin 35 50 60
-20 2.780 3.805 4.902 -20 2.414 1.909 1.606
-15 2.854 3.878 4.976 -15 2.717 2.111 1.758
-10 2.927 4.024 4.976 -10 3.020 2.313 2.010
-5 2.927 4.098 4.976 -5 3.424 2.566 2.161
0 3.000 4.098 5.049 0 3.626 2.818 2.263
5 2.927 3.878 4.693 5 3.980 2.970 2.414
7.5 2.780 3.732 4.463 10 4.636 3.374 2.667
10 2.927 3.805 4.610 15 5.091 3.677 2.869
15 3.000 3.805 4.610 20 5.343 3.879 3.212
20 3.000 3.951 4.683 25 5.545 4.232 3.374
25 3.000 3.951 4.756 30 5.747 4.535 3.626
30 3.000 4.024 4.756 35 5.949 4.789 3.879
35 3.000 4.024 4.829 40 6.051 5.040 4.081
40 3.000 4.024 4.829

Please remember, that the relation between electrical power input Pel and heat power
output Pheat is given by

Pheat = COP · Pel

Plot the table data with the electrical power, COP, and heating power as functions ofExercise 14.2
ambient temperature.

Hint: Use two nested DO blocks and two POLYG2 blocks with the outlet temperatures as
curve parameter.

Tutorial

372 14. PV Heat Pump Storage System

Now that we know the hourly ambient temperature, the heat demand, and “our” heatExercise 14.3
pump characteristics, plot the time series of the heat and electricity demand, and
calculate the peak heat and electricity demand, and the annual average COP.

Pq,max = 46.60 kWh Pel,max = 16.83 kWh COP,ave = 2.77

The heat demand data stored in file ws1_load_profile.dat are measured data from aPV
multi-family building near Stuttgart, Germany. The long-term average irradiance data
for Stuttgart can be found in the MTM data base of INSEL.

Tutorial

373

Assuming a PV-module efficiency of 15 per cent on average, calculate the heat demandExercise 14.4
coverage as a function of the installed PV peak power.

Tutorial

374 14. PV Heat Pump Storage System

Summary q qq q You have learnt ..q qq q Some typical examples ..

Tutorial

375

Solutions

The task has been to calculate monthly means of ambient temperature and heat demandExercise 14.1
in a given file. A CLOCK block with time step one hour is a conventient way to handle
the fact that different months have a different number of days. A READ block to read the
data can be used. An AVEC block can calculate the conditional averages.

Finally, a SCREEN block can display the results in tabular form. The format used in the
text was (F8.0,2F8.2).

Tutorial

376 14. PV Heat Pump Storage System

The task was basically to plot table data from a given table. The first problem that arisesExercise 14.2
is, how to transfer the data to INSEL blocks? The suggested solution is, to use two
POLYG2 (p,x,y) blocks, one for the electric power and one for the COPs. The parameter p
is the outlet temperature, x should be the ambient temperature, and y the electric power
and the COPs, respectively.

The POLYG2 entity editor for the electric power should look like this:

One way to get there is, to copy and paste the table from 369 into your favorite text
editor, rearrange the data and then copy/paste the formatted data into the two POLYG2
blocks. Please remember that entity editors accept only keyboard shortcuts, i. e., ctrl c
/ ctrl v on Windows and cmd c / cmd v on macOS.

Since the task was to plot three curve sets with three graphs per set as a function of
ambient temperature, two DO blocks can be used. One for counting the three curve sets,
i. e., initial value 1, final value 3, increment one, and the second one for the variation of
the ambient temperature, i. e., initial value −20, final value 40, increment one, for
example.

The DO block is a Timer block (T-block). INSEL accepts an arbitrary number of T-blocks
in one model, but only one, unique main timer. If the two DO blocks would be in the
model without any dependencies on other blocks, i. e., both DO blocks without input,
the inselEngine could not determine which of them is meant as main timer, they would
be equitable or flat, non-hierarchical.

If we were to plot the three curves for a fixed outlet temperature, we would vary the
ambient temperature and plot the three graphs. Consider this as an INSEL model that
you coud put in a macro, for instance. Now, we want to execute this “macro” three times.
Ergo, we would use a DO block and connect its output as an input to the macro. We

Tutorial

377

could do this by adding an input to the ambient-temperature DO block and connect the
“outer” DO block to this input. Now it is unique, the 1-2-3 DO block is the main timer,
and the second DO block is what we call a sub-timer.

The last problem is, that we do not have 1, 2, 3 as outlet temperature, but 35, 50, and 60
(which cannot be parametrized by the DO block). The trick is, to use a POLYG block
with three nodes, use

1 35
2 50
3 60

as parameters and connect the input to the 1-2-3-DO block.

The rest should be obvious now. A MUL block multiplies the electric power by the COP
to get the heat power. A parametric PLOTP is used to finally plot the desired result with
the outlet temperature as curve parameter, the ambient temperature as x-coordinate,
and the three y inputs for the electrical power, the COPs, and finally the heating power.

Tutorial

378 14. PV Heat Pump Storage System

Tutorial

15 :: TRNSYS Restaurant

The idea of this workshop is to provide a step-by-step introduction into the basic ideas
of building simulation in INSEL. So far, there are three different approaches to building
simulation in INSEL 8: (i) a very simple model based on a German Standard (DIN 18599)
for monthly heating and cooling demand calculations (INSEL block D18599), (ii) a R-C
model based simple dynamic model (INSEL block FDBS), and (iii) a as-much-as-possible
dynamic simulation model, based on blocks for internal and external walls (WALL and
WALLX), radiation exchange (RADI), zone temperature calculations (TROOM), etc.

In a future release of INSEL (version 9.0) it is planned to have a block (EPLUS) which
allows to incorporate Energy Plus models and exchange data between Energy Plus
simulations and INSEL models.

So, what is the TRNSYS Restaurant?

The TRNSYS Restaurant is a virtual building, which is used (in the TRNSYS
documentation and software distribution) as a “generic” example for the dynamic
simulation of a building in TRNSYS. It has three zones, a well-defined occupancy
schedule and all details of “building physics”, etc. And, as TRNSYS is one of the most
respected building simulation softwares woldwide, the TRNSYS Resuatrant can serve as
a “blue print” of a building simulation example.

Construction and schedules

The TRNSYS Restaurant consists of a dining room, a kitchen, and a storage area. The
floor plan of the restaurant is shown in Figure 15.1.

� -15.0m

7.5m

6

?

7.5m

?

6

Kitchen Storage

Dining Room

△
North

� -15.0m

7.5m

6

?

7.5m

?

6

Kitchen Storage

Dining Room

Figure 15.1: Floor plan with window (green), heat bridges (red) and lattice model of the
TRNSYS Restaurant.

As can be seen from the figure, the dining room faces directly south. It has a large
double-glazed window with a total area of 10 m2. The exact geometry of the window is

380 15. TRNSYS Restaurant

not defined in the original example. Let us assume that the window is placed in the
center of the south wall with a width of ten meters and a height of one meter. The
dimensions of the three rooms as used in the TRNSYS model are shown in Table 15.1.

Zone Name W–E / m N–S / m Area / m2 Surface / m2 Volume / m3

1 Dining Room 15.0 7.5 112.5 360.0 337.5
2 Kitchen 7.5 7.5 56.25 202.5 168.75
3 Storage 7.5 7.5 56.25 202.5 168.75

Table 15.1: Dimensions of the building. The height of all rooms is 3.0 meters.

It can be noticed that the geometry is not hundred percent correct, i. e., the fact, that the
area of the dining room is exactly the sum of the areas of the kitchen and storage shows
that the thickness of the internal wall between kitchen and storage is neglected in the
geometric model. The same applies to the heat bridges in the corners.

The building consists of two types of walls (outside and inside), the floor, and a flat roof.Constructions
The details of their constructions are compiled in Table 15.2.

Name Layer Thickness Conductivity Density Spec. heat U -value
m Wm−1 K−1 kgm−3 J kg−1 K−1 Wm−2 K−1

Outside Gypsum 0.019 0.728 1,601 750
Insulation 0.076 0.0431 32 750 0.501
Stucco 0.025 0.692 1,858 750

Inside Gypsum 0.019 0.728 1,601 750
Wood 0.058 0.0116 592 2,250 0.191
Gypsum 0.019 0.728 1,601 750

Floor Stone 0.025 1.436 881 1,500
Insulation 0.076 0.0431 32 750 0.498
Concrete 0.102 1.731 2,242 750

Roof Plastboard 0.016 0.528 1,200 840
Airspace 0 n.a. n.a. n.a.
Insulation 0.076 0.0431 32 750 0.452
Concrete 0.102 1.731 2,242 750
Roofing 0.006 0.694 2,100 1,000

Table 15.2: Layer structures and thermophysical properties of walls, floor, and roof (all
inside to outside). TRNSYS simulates the airspace of the roof as a thermal resistance of
0.18 m2 KW−1. The U -values are calculated with the EN ISO 6946 values for the heat
resistances, i. e., Ri = 0.13 and Ro = 0.04 m2 KW−1.

The heat transfer coefficient at the outside of the exterior walls and roof is assumed to
vary with the wind speed. The heat transfer coefficient of the floor is set to a very small
value (10−5 kJ h−1 m−1 K−1 = 0.278× 10−5 Wm−1 K−1) which imposes the surface
temperature to be equal to the ground temperature.

By definition, the building has a people-occupancy schedule: It is assumed that theSchedules
restaurant has an occupancy from 7 a.m. to 10 p.m. every day. The number of people in
the building varies as given in Table 15.3.

Tutorial

381

Time Weekdays Weekends
0 – 8 0 0
8 – 10 5 10
10 – 12 2 5
12 – 14 10 10
14 – 17 2 4
17 – 22 10 10
22 – 24 0 0

Table 15.3: Daily number of people in the restaurant.

The model assumes that each occupant of the building delivers a convective heat gain ofGains
150 kJ h−1 = 41.7 W, a radiative heat gain of 70 kJ h−1 = 19.5 W, and an absolute
humidity of 0.058 kg h−1. Gains from people are assumed for both, dining room (scale
factor: five times number of customers) and kitchen (0.5 times number of customers).

Other gains come from the lights with 300 kJ h−1 = 83.47 W convective and
1,500 kJ h−1 = 417 W radiative, respectively (no humidity). The lights are on whenever
the building is occupied, i. e., from 7 a.m. to 10 p.m. Their power is scaled by a factor two
for the dining room and one for the kitchen.

The kitchen has also gains associated with the stoves, i. e., 10,000 kJ h−1 = 2,778 W
convective and 5,000 kJ h−1 = 1,389 W radiative, and a humidity of 0.1 kg h−1,
respectively. The stoves are on during occupancy time, i. e., from 7 a.m. to 10 p.m.

The storage room has fixed gains from a freezer with only convective heat ejection of
1,500 kJ h−1 = 417 W, running 24 hours every day.

The infiltration rate is fixed at half an air change per hour. An additional infiltration ofAir flows
the dining room is given as 0.03 times the number of customers. The kitchen is
ventilated with ambient air from 7 a.m. to 10 p.m. at a rate of 0.75 air changes per hour.

The dining room and kitchen are maintained at 20 ◦C during occupied hours and atHeating and
cooling 15 ◦C other times. The maximum power of the kitchen and dining room heaters is

50,000 kJ h−1 = 13.9 kW each. It is assumed that the heat provided is purely convective,
i. e., no radiative and no humidification gains. The storage area is unheated.

A cooling unit with a nominal power of 50,000 kJ h−1 = 13.9 kW is located in the
kitchen. It turns on if the temperature rises above 26 ◦C. Dining room and storage don’t
have cooling units installed. TRNSYS Type 56 assumes that all cooling power is purely
convective but can have a dehumidification fraction. In case of the TRNSYS Restaurant,
dehumidification is switched off.

The initial conditions for all three zones are 20 ◦C air temperature and 50 percent
relative humidity.

Calculate the heating and cooling demand (assuming that the building is located inExercise 15.1

Tutorial

382 15. TRNSYS Restaurant

Stuttgart, Germany) on the basis of the German DIN 18599 Standard, implemented in the
INSEL block D18599.

Tutorial

383

Summary q qq q You have learnt ..q qq q Some typical examples ..

Tutorial

384 15. TRNSYS Restaurant

Solutions

The task has been to calculate monthly means of ambient temperature and heat demandExercise 15.1
in a given file. A CLOCK block with time step one hour is a conventient way to handle
the fact that different months have a different number of days. A READ block to read the
data can be used. An AVEC block can calculate the conditional averages.

Finally, a SCREEN block can display the results in tabular form. The format used in the
text was (F8.0,2F8.2).

Tutorial

Résumé

One way or another – whether you worked your way through the complete Tutorial or
have just peeped into some of the Modules, we hope that you could benefit from the
Modules you have studied.

INSEL offers several levels of detail. It is not necessary to go all the way down to the
deepest programming techniques if you wish to just want to find an answer to one of
your actual problems. Nevertheless, we hope that youfound some interesting solutions
in this Tutorial.

386 15. TRNSYS Restaurant

Tutorial

A Appendix

A.1 Directory structure, dependencies, and paths

INSEL 8 makes use of the following directories

Installation directory

Path directory

Hidden application data directory

Working directory

MATLAB & Simulink support directory

The main directory of INSEL is the installation directory, i. e., the directory where INSELInstallation
directory is installed. The default names and paths for version 8.1 are

C:\Program Files\INSEL_8.1
for the 32-bit version of INSEL 8.1 under 32-bit Windows and
for the 64-bit version of INSEL 8.1 under 64-bit Windows

C:\Program Files (x86)\INSEL_8.1
for the 32-bit version of INSEL 8.1 under 64-bit Windows

/Applications/INSEL.app
for the 64-bit version of INSEL 8.1 under 64-bit Mac OS X

/opt/INSEL
for the Linux version of INSEL 8.1

However, the user may wish to install into a different directory – which is possible in all
versions. The question then is “How can other applications find out, if and where INSEL
is installed on a computer?”

INSEL installs a file named inselroot.ini in the Path directory. The file has twoPath directory
records only: a section name [InstallDir] and a key inselroot containing the path to
the INSEL installation, e. g.,

[InstallDir]
inselroot=C:\Program Files\INSEL_8.1

The location where inselroot.ini resides depends on the operating system used.

388 Appendix A. Appendix

C:\Documents\Users\All Users\INSEL
for Windows XP (language dependent)

C:\Users\All Users\INSEL
for Windows Vista Checken!

C:\ProgramData\INSEL
for Windows 7 and Windows 8

/opt/INSEL
for Mac OS and Linux

The inselTools library provides a method to retrieve the installation directory. The
C++ interface of this function is

extern ”C” void inselroot(char* path, int* iLen, int* irc);

The Fortran call

CALL INSELROOT(PATH,ILEN,IRC)

returns the path to the installation directory in PATH, which is a CHARACTER*1024
variable, ILEN and IRC are of type INTEGER containing the length of the path string
(without backslash zero) and the return code, i. e., zero when everything is okay.

INSEL writes user-specific data and temporary files to the hidden application dataHidden application
data directory directory. Amongst other files, this directory contains a user-specific version of the

palette, custom types (if any), and the user-specific preferences in a file named
Preferences.vseit.

The location of the hidden application data directory is operating-system dependent.

C:\Users\USERNAME\AppData\Roaming\INSEL
for Windows 7 and Windows Vista

C:\Documents\USERNAME\Anwendungsdaten\INSEL
for Windows XP (language dependent) wie heisst das auf engelisch?

/Users/USERNAME/.insel
for Mac OS and Linux

Location and name cannot be configured, except within the options to redirect the user’s
home directory as such. When the directory does not exist for a new INSEL user it is
created automatically and hint similar to the following is displayed.

Tutorial

A.1. Directory structure, dependencies, and paths 389

The inselTools library provides a method to retrieve the hidden application data
directory. The C++ interface of this function is

extern ”C” void getinseldir(int* I, char* path, int* iLen, int* irc);

A Fortran call with I = 2
CALL GETINSELDIR(I,PATH,ILEN,IRC)

returns the path to the hidden application data directory in PATH, which is a
CHARACTER*1024 variable, I, ILEN and IRC are of type INTEGER.

The other variables return the length of the path string (without backslash zero) and the
return code, i. e., zero when everything is okay.

Every INSEL user has an own working directory, named insel.work, by default.Working directory

The location of the working directory is operating-system dependent.

C:\Users\USERNAME\Documents\insel.work
for Windows 7

/Users/USERNAME/Documents/insel.work
for Mac OS and Linux

It is possible to redirect the working directory via the File > Preferences dialog
(Windows) or the INSEL > Preferences dialog (Mac OS), respectively. Linux? The path
can be specified absolute or relative to the user’s documents directory.

User-block programming is supported in a subdirectory of the working directory, namedSubdirectories
inselUB – the name and the substructure of the inselUB directory is fixed.

Temporary files and files derived from user-block programming like Java .class files
are maintained in the tmp and customTypes subdirectories of the hidden application
data directory.

This is a list of full-path directory names which can be retrieved via getinseldir whengetinseldir
the index I is set correspondingly:

1 Working directory

Tutorial

390 Appendix A. Appendix

2 Hidden application data directory

3 Custom types directory

4 Temporary files directory

5 INSEL model directory

6 User block support directory

The MATLAB specific installation includesMATLAB &
Simulink support

directory The resources/simulink directory which contains the Simulink library
INSEL.mdl and its definition file slblocks.m, the compiled S-function SinselBlock
amongst some browsers and other things.

A method which manipulates the local matlabrc.m file which resides in the
MATLAB installation direcory toolbox/local.

All files are highly MATLAB version dependent. In addition, when a new MATLAB
version is installed after INSEL has been installed, the manipulation of matlabrc.m has
to be done by the person who installs the new MATLAB version. The code to be added
at the bottom of matlabrc.m is typically

path(’C:\Program Files\insel 8\resources’,path)
path(’C:\Program Files\insel 8\resources\icons24’,path)
path(’C:\Program Files\insel 8\resources\simulink’,path)

for the default installation of INSEL. As an alternative to manipulating matlabrc.m a file
named startup.m with the same content for the path extension can be placed in
MATLAB’s search path.

Tutorial

A.1.1 File Handling 391

RedirectStdErrToErrorLog=false fuer Eclipse Entwicklung

RedirectStdErrToErrorLog=true fuer Auslieferung

A.1.1 File Handling

In insel 8 all internal files get a fixed Fortran unit number. User unit numbers should
start at 50.

Wieder auf GETUNI umstellen!!!

Tutorial

392 Appendix A. Appendix

10 insel.msg
11 report.tmp
12 mtmup input file
13 BLOCKDOC TEMPORAER (ex: sedes spetrabs.dat)
14 FREI (ex: sedes ccmneu.dat)
15 inselWeather.ind
16 inselWeather.dat
17 inselWeather.loc
18 TSOIL
19 insel.gpl
20 insel.gnu
21 pvibp-file
22 pvdet*-file
23 inselroot.ini

Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char
0 0 000 NUL (null) 32 20 040 Space 64 40 100 @ 96 60 140 ‘
1 1 001 SOH (start of heading) 33 21 041 ! 65 41 101 A 97 61 141 a
2 2 002 STX (start of text) 34 22 042 ” 66 42 102 B 98 62 142 b
3 3 003 ETX (end of text) 35 23 043 # 67 43 103 C 99 63 143 c
4 4 004 EOT (end of transmission) 36 24 044 & 68 44 104 D 100 64 144 d
5 5 005 ENQ (enquiry) 37 25 045 % 69 45 105 E 101 65 145 e
6 6 006 ACK (acknowledge) 38 26 046 & 70 46 106 F 102 66 146 f
7 7 007 BEL (bell) 39 27 047 ’ 71 47 107 G 103 67 147 g
8 8 010 BS (backspace) 40 28 050 (72 48 110 H 104 68 150 h
9 9 011 TAB (horizontal tab) 41 29 051) 73 49 111 I 105 69 151 i

10 A 012 LF (line feed) 42 2A 052 * 74 4A 112 J 106 6A 152 j
11 B 013 VT (vertical tab) 43 2B 053 + 75 4B 113 K 107 6B 153 k
12 C 014 FF (form feed) 44 2C 054 , 76 4C 114 L 108 6C 154 l
13 D 015 CR (carriage return) 45 2D 055 - 77 4D 115 M 109 6D 155 m
14 E 016 SO (shift out) 46 2E 056 . 78 4E 116 N 110 6E 156 n
15 F 017 SI (shift in) 47 2F 057 / 79 4F 117 O 111 6F 157 o
16 10 020 DLE (data link escape) 48 30 060 0 80 50 120 P 112 70 160 p
17 11 021 DC1 (device control 1) 49 31 061 1 81 51 121 Q 113 71 161 q
18 12 022 DC2 (device control 1) 50 32 062 2 82 52 122 R 114 72 162 r
19 13 023 DC3 (device control 1) 51 33 063 3 83 53 123 S 115 73 163 s
20 14 024 DC4 (device control 1) 52 34 064 4 84 54 124 T 116 74 164 t
21 15 025 NAK (negative acknowledge) 53 35 065 5 85 55 125 U 117 75 165 u
22 16 026 SYN (synchronous idle) 54 36 066 6 86 56 126 V 118 76 166 v
23 17 027 ETB (end of trans. block) 55 37 067 7 87 57 127 W 119 77 167 w
24 18 030 CAN (cancel) 56 38 070 8 88 58 130 X 120 78 170 x
25 19 031 EM (end of medium) 57 39 071 9 89 59 131 Y 121 79 171 y
26 1A 032 SUB (substitute) 58 3A 072 : 90 5A 132 Z 122 7A 172 z
27 1B 033 ESC (escape) 59 3B 073 ; 91 5B 133 [123 7B 173 {
28 1C 034 FS (file separator) 60 3C 074 < 92 5C 134 \ 124 7C 174 |
29 1D 035 GS (group separator) 61 3D 075 = 93 5D 135] 125 7D 175)
30 1E 036 RS (record separator) 62 3E 076 > 94 5E 136 ^ 126 7E 176 ~
31 1F 037 US (unit separator) 63 3F 077 ? 95 5F 137 _ 127 7F 177 DEL

Tutorial

	Preface
	Introduction
	PART I :: Fundamentals
	Getting started with INSEL 8
	Installation
	Windows
	macOS

	Starting and ending INSEL 8
	Running a first example
	INSEL blocks in VSEit
	The Palette
	Block entities
	Entity editors
	Errors in networks

	Macros

	INSEL programming concepts
	INSEL block groups
	Basic photovoltaics
	The INSEL concept of time
	Nested Timer blocks
	The Timer blocks CLOCK and FDIST
	Solar radiation

	Reading and writing data files
	Reading data
	Fortran format conventions
	The READN block
	The READD block
	File name qualifiers

	Writing data to files
	Monitoring and simulation

	Plotting data

	If blocks
	At end If blocks
	If blocks with a parameter
	Conditional If blocks
	General if conditions
	Load profiles

	Calculation list

	Delay and Loop blocks
	Handling control cycles
	The DELAY block
	PID controller

	Solving differential equations
	The Jentsch rocket
	Solar collector equation

	Loop block concept

	PART II :: Applications and exercises
	Solar meteorology
	Global radiation
	Radiation time series generation
	Diffuse radiation
	Radiation on tilted surfaces
	Ambient temperature time series generation

	Photovoltaics
	Grid-connected PV generators
	Optimum tilt angle
	Parameter identification methods for PV modules
	Module mismatch and shading problems
	Thin-film modules
	Stand-alone PV systems
	Batteries in INSEL
	Implementation of load profiles
	System sizing
	System studies
	Parameter variations

	The hybrid system Energielabor

	Solar heating and cooling
	Solar collectors
	Storage tanks
	Heat exchangers

	INSEL GUI's with VSEit
	INSEL in MATLAB and Simulink
	MATLAB
	Simulink
	S-functions

	The S-function SinselBlock
	Getting Started
	Installer
	Link vs. simple copy
	Enumerations and operation modes

	PART III :: Advanced concepts
	INSEL without GUI
	Running .insel files
	.include/.insel applications
	Parameter variations with Ruby scripts
	Optimization with GenOpt
	Direct calls of INSEL blocks
	The C++ class CinselBlock

	Programming INSEL blocks
	A Fortran crash course
	The principle form of a Fortran program
	Fortran data types
	If-Then-Else structures
	Structuring program projects
	Guidelines for writing INSEL Fortran code

	Programming INSEL blocks (cont.)
	Block wizard
	Templates
	Call modes
	Properties
	Documentation

	Text output from INSEL
	Message files
	The INSEL message system

	INSEL block source code examples
	The CONST block
	The SUM, MUL, MAX, and MIN blocks
	The DIV block
	The ROOT, GAIN, ATT, and OFFSET blocks
	The T-block DO
	The I-block IF
	The D-block DELAY
	The L-block NULL

	Interfacing INSEL with Python

	Programming INSEL extensions in Eclipse
	Java Development Kit
	Eclipse
	A first Java project
	Installing Eclipse plugins

	C/C++ Development Tools (CDT)
	Fortran Development Tools (Photran)
	Ruby Development Tools
	Python (PyDev)
	TeXlipse
	WindowBuilder
	Subversion (SVN)
	Eclipse as INSEL block IDE
	A makefile project for user block development
	Debugging user blocks in Eclipse

	PART IV :: Workshops
	PV Heat Pump Storage System
	TRNSYS Restaurant

	Résumé
	Appendix
	Directory structure, dependencies, and paths
	File Handling

